Copyright | (c) 2011 diagrams-lib team (see LICENSE) |
---|---|

License | BSD-style (see LICENSE) |

Maintainer | diagrams-discuss@googlegroups.com |

Safe Haskell | Safe-Inferred |

Language | Haskell2010 |

A *cubic spline* is a smooth, connected sequence of cubic curves
passing through a given sequence of points. This module implements
a straightforward spline generation algorithm based on solving
tridiagonal systems of linear equations.

- solveCubicSplineDerivatives :: Fractional a => [a] -> [a]
- solveCubicSplineDerivativesClosed :: Fractional a => [a] -> [a]
- solveCubicSplineCoefficients :: Fractional a => Bool -> [a] -> [[a]]

# Solving for spline coefficents

solveCubicSplineDerivatives :: Fractional a => [a] -> [a] Source

Use the tri-diagonal solver with the appropriate parameters for an open cubic spline.

solveCubicSplineDerivativesClosed :: Fractional a => [a] -> [a] Source

Use the cyclic-tri-diagonal solver with the appropriate parameters for a closed cubic spline.

solveCubicSplineCoefficients :: Fractional a => Bool -> [a] -> [[a]] Source

Use the cyclic-tri-diagonal solver with the appropriate parameters for a closed cubic spline.