
Leksah: An Integrated Development

Environment for Haskell

Jürgen Nicklisch-Franken

Hamish Mackenzie

July 21, 2009

Contents

1 Introduction 4
1.1 Further Information . 4
1.2 Release Notes . 4

1.2.1 Version 0.6 Beta Release Juli 2009 4
1.2.2 Version 0.4 Beta Release February/March 2009 5
1.2.3 Version 0.1 Alpha Release February 2008 5

2 Installing Leksah 6
2.1 Generic Installation Instructions . 6

2.1.1 Install GHC (Glasgow Haskell Compiler) 6
2.1.2 Install Cabal . 6
2.1.3 Install Gtk2Hs . 6
2.1.4 Install Leksah . 7
2.1.5 Where Things Are Installed . 7
2.1.6 Post installation steps . 7

2.2 OS X (using MacPorts) . 7
2.2.1 Install MacPorts . 7
2.2.2 Set up ~/.pro�le . 8
2.2.3 Update MacPorts . 8
2.2.4 Set Variants To Use Quartz (Optional) 8
2.2.5 Install . 8
2.2.6 Make It Look Nice . 8
2.2.7 Point Leksah At The Source . 9

2.3 Ubuntu . 9
2.3.1 Install Prerequisites . 9
2.3.2 Install GHC (Once 6.10.1 is in the universe repository) 9
2.3.3 Install Cabal . 9

1

2.3.4 Install Gtk2Hs . 10
2.3.5 Add Cabal To Your PATH . 10
2.3.6 Install Leksah . 10

2.4 MS Windows . 10

3 First start of Leksah 12
3.1 Hello World example . 13

4 The Editor 16
4.1 Find and Replace . 16

4.1.1 Grep . 17
4.2 Source Candy . 18
4.3 Completion . 18
4.4 Using the Flipper to Switch Editors . 19
4.5 Editor Preferences . 19
4.6 Further info . 20

5 Packages 21
5.1 Package Editor . 21
5.2 Building . 22
5.3 Background Build . 23
5.4 Build system �ags . 24
5.5 Import Helper . 24

6 Module Browser and Metadata 26
6.1 The Modules Pane . 26
6.2 The Info Pane . 28
6.3 The Search Pane . 29
6.4 The References Pane . 30
6.5 Metadata collection . 30

7 Debugger 32

8 Con�guration 34
8.1 Layout . 34

8.1.1 Group panes . 34
8.1.2 Detached windows . 35

8.2 Session handling . 35
8.3 Shortcuts . 36
8.4 Con�guration �les . 36

9 The Project 38

10 Appendix 39
10.1 Command line arguments . 39

2

10.2 The Candy �le . 39
10.3 The Keymap �le . 40

List of Figures

1 FirstStart dialog . 12
2 After start . 13
3 Leksah with open project . 14
4 File menu . 16
5 Edit menu . 16
6 Find bar . 17
7 Grep pane . 17
8 Source candy example . 18
9 Completion . 19
10 Editor Preferences . 19
11 Package Menu . 21
12 PackageEditor 1 . 22
13 Error Pane . 23
14 Package Flags . 24
15 Import dialog . 25
16 Modules pane . 27
17 Construct module dialog . 28
18 Info pane . 28
19 Search pane . 29
20 References Pane . 30
21 Metadata menu . 30
22 Metadata Preferences . 31
23 Debug & Bu�er menu . 32
24 Debug Pane . 33
25 View menu . 34
26 Initial pane position . 35
27 Session menu . 36

License

Leksah has been put under the GNU GENERAL PUBLIC LICENSE Version 2. The full
license text can be found in the �le data/gpl.TX in the distribution.

3

1 Introduction

Leksah is an IDE (Integrated Development Environment) for the programming language
Haskell. It is written in Haskell. Leksah is intended as a practical tool to support the
Haskell development process.
Leksah uses GTK+ as GUI Toolkit with the gtk2hs binding. It is platform independent

and should run on any platform where GTK+, gtk2hs and GHC can be installed. It
is tested on Linux, Windows and Mac. It uses the Cabal package management and
build system for Package Management. It needs the Glasgow Haskell Compiler for full
functionality (GHC).
This document is a reference to the functionality of Leksah, it is not intended to be a

tutorial. Since Leksah is in the state of development the information may be incomplete
or even wrong.

1.1 Further Information

The home page for Leksah is leksah.org. The source code for Leksah is hosted under
code.haskell.org/leksah. The Leksah user Wiki is haskell.org/haskellwiki/Leksah. The
Leksah mailing list can be accessed at projects.haskell.org/cgi-bin/mailman/listinfo/leksah.
The current version of this manual can be found at leksah.org/leksah_manual.pdf. An
issue tracker is at code.google.com/p/leksah/issues/list. You can contact the developers
at info (at) leksah.org.
For the Programming language Haskell go to www.haskell.org. For information about

gtk2hs www.haskell.org/gtk2hs/. For information about GTK+ go to www.gtk.org.

1.2 Release Notes

1.2.1 Version 0.6 Beta Release Juli 2009

The 0.6 version introduces an interpreter/debugger mode. This mode can be switched on
and o� from the toolbar. In interpreter/debugger mode expressions can be evaluated and
the type of expressions can be dynamically shown. The GHCi debugger is integrated, so
that breakpoints can be set, it is possible to step through the code, observe the values
of variables and trace the execution history. The other features of Leksah like building
in the background and reporting errors on the �y work in debugger mode as in compiler
mode.
Another new feature is integration of grep and text search with regular expression.

This can be accessed from the �ndbar.
The GUI framework has been enhanced, so that layouts can be nested in so called

group panes. This feature is used for the debugger pane. Furthermore notebooks can be
detached, so that Leksah can be used on multiple screens.
A lot of little enhancements has been made and numerous bugs has been �xed.
Known bugs and problems:

• The package editor works only for cabal �les without con�gurations.

4

http://leksah.org
http://code.haskell.org/leksah
http://haskell.org/haskellwiki/Leksah
http://projects.haskell.org/cgi-bin/mailman/listinfo/leksah
http://leksah.org/leksah_manual.pdf
http://code.google.com/p/leksah/issues/list
mailto:info@leksah.org
http://www.haskell.org
http://www.haskell.org/gtk2hs/
http://www.gtk.org

• MS Windows: The check for external modi�cations of source �les does not work.

• MS Windows: Interruption of a background build does not work.

• GUI History still not working.

• Traces pane of the Debugger does not work appropriately.

1.2.2 Version 0.4 Beta Release February/March 2009

The 0.4 Release is the �rst beta release of Leksah. It should be usable for practical work
for the ones that wants to engage with it.
It depends on GHC ≥6.10.1 and gtk2hs ≥ 0.10.0.
The class pane and the history feature are not quite ready, so we propose not to use

it yet.

1.2.3 Version 0.1 Alpha Release February 2008

This is a pre-release of Leksah. The editor for Cabal Files is not ready, so we propose
not to use it yet. w

5

2 Installing Leksah

It is a good idea to install sources for your Haskell libraries when using

Leksah. Leksah can then give you much better information from Metadata. Installing
with cabal install will do that, and you can download the sources for GHC even after
you installed it from a binary package. However compiling from sources is necessary
for special packages, which perform some special magic, like generating header �les or
such. With sources installed Leksah will show you source comments for functions while
auto-completing and will be navigate you to the sources of functions.
If you have any trouble installing and this manual will not help, please check the Wiki,

the mailing list or contact the developers to �nd a solution. If it is a Leksah problem,
then it is important to us and needs to be �xed.
We work on installers for Windows and Mac and packages for Debian/Ubuntu are in

preparation. Further help needed!

2.1 Generic Installation Instructions

2.1.1 Install GHC (Glasgow Haskell Compiler)

At the time of writing Leksah supports GHC in the versions (6.10.*). For information
about installing GHC go to http://haskell.org/ghc.

2.1.2 Install Cabal

At the time of writing Leksah requires at least version 1.6.0.1. For information about
installing Gtk2Hs got to http://haskell.org/cabal.
On operating systems with package managers you may �nd that a Cabal package is

available. Once again if you want good Metadata for the Cabal functions, try to build
binaries on your machine.

2.1.3 Install Gtk2Hs

At the time of writing Leksah supports only the most current version (0.10.*). For
information about installing Gtk2Hs got to http://haskell.org/gtk2hs.
If you are planning on installing a newer version, then you will need to make sure it is

compatible with the version of GHC you have installed �rst.
On operating systems with a package manager you may wish to use a source OS

package and build a binary OS package to install. You should be able to prevent the
working directory from being cleaned, so it can be used for Leksah's Metadata. Doing
this means that other OS packages depending on Gtk2Hs can still easily be installed.
If you compile Gtk2Hs manually, check the output of ./con�gure. At the end it will

list the Haskell packages that are going to be build. Leksah needs GTK, glib and gtk-
sourceview2.
Gtk2Hs conditionally compiles some code dependent of the version of the underlying

GTK libraries. This can cause strange compiler errors when compiling Leksah later.

6

http://haskell.org/ghc
http://haskell.org/cabal
http://haskell.org/gtk2hs

2.1.4 Install Leksah

Either: Install cabal-install from http://haskell.org/cabal. Then run �cabal install
leksah �user�. This is the preferred way.
Or: Download, con�gure, build and install the prerequisite packages: binary ≥0.4.1,

bytestring ≥0.9.0.1, utf8-string ≥0.3.1.1, regex-posix ≥0.39.1 which is available from
HackageDB hackage.haskell.org with typical Cabal procedure. (Go to the root folder
of the package. Then do runhaskell con�gure, runhaskell build, sudo runhaskell install.
The other packages needed should have been installed with GHC anyway. (I'm nut sure
if GHC-extralibs is needed). Then get the Leksah package via Hackage and do the same.

2.1.5 Where Things Are Installed

Leksah installs a an executable in a folder that should be in the search path, and a couple
of data �les in a data folder. These places are chosen by the Cabal package management
system and depend on the target platform and the way you install. On Linux the data
folder may be /usr/share/leksah-0.4/data. For storing preferences, sessions and collected
meta-data Leksah constructs a .leksah directory in your home folder. If you want to
change or add con�guration �les for keymaps, source candy, etc, you can put them in
this place.

2.1.6 Post installation steps

If you upgrade to version 0.6 you should clean the Current.session and maybe the De-
fault.prefs �le from your .leksah con�guration folder. This means that you loose your
personal settings. As well you should clean the IDE.session �les from the project folders
you are working on (or at least avoid to open them when prompted).
If you use a customized keymap in your .leksah folder, you need to append new key-

bindings.
New With version 0.6 for a pleasant visual appearance, you have to copy or append

the .gtkrc-2.0 �le from the Leksah data folder or from the data folder in Leksah sources
to your home folder.

2.2 OS X (using MacPorts)

We have just �nished building an Intel Mac dmg and we would like to know if it works
ok. If you have a chance, could you install it and let us know if it runs ok.
http://leksah.org/Leksah.dmg

Before starting with the installer, this is our recommended procedure for installing on
OS X at present.

2.2.1 Install MacPorts

Download and install MacPorts by following the instructions on http://www.macports.

org/install.php.

7

http://haskell.org/cabal
hackage.haskell.org
http://leksah.org/Leksah.dmg
http://www.macports.org/install.php
http://www.macports.org/install.php

2.2.2 Set up ~/.pro�le

Add the following to your ~/.pro�le then open a new terminal window and type �set� to
make sure it has worked
export PATH=~/.cabal/bin:/opt/local/bin:$PATH

export XDG_DATA_DIRS=/opt/local/share
XDG_DATA_DIRS is only needed at run time, so if you have already built without

it you can just add it now and it should help GTK �nd the �les it needs.

2.2.3 Update MacPorts

Run �sudo port selfupdate�. To make sure you have the latest Port�les.

2.2.4 Set Variants To Use Quartz (Optional)

If you want to use the Quartz version of GTK+ (instead of the X11 version) then add
the following to /opt/local/etc/macports/variants.conf.
+no_x11

-x11

+quartz
Warning 1 doing this will disable OpenGL support in GTK+ or Gtk2Hs (gtkglext).
Warning 2 for some reason GTK applications when they start will not be in the

foreground, instead they will be hidden all your other running applications.
Warning 3 if you already have GTK MacPorts packages installed then you need to

uninstall and reinstall the packages that support these variants

2.2.5 Install

Run the following to install leksah. The -k is important it keeps the source and .hi
�les for use in the Leksah metadata. Do not include gtkglext in the �rst line if you are
building the Quartz version (as it is only supported in X11 builds).
sudo port install gtk2 cairo librsvg libglade2 gtksourceview2 gtk-chtheme

gtk2-clearlooks gtkglext

pkg-config --modversion gtksourceview-2.0
The pkg-config should output version 2.4.2 or greater. If it does not check your

PATH has /op/local/bin before any other folders with pkg-config. Once this is sorted
you can move on to running...
sudo port -k install ghc gtk2hs hs-cabal

cabal install leksah
If you have errors at this point it is a good idea to check �ghc-pkg list�

2.2.6 Make It Look Nice

Run gtk-chtheme and choose one of the Clearlooks themes.

8

2.2.7 Point Leksah At The Source

Run �leksah� and when it asks for �paths under which haskell source packages may be
found� add the following to the list.

/opt/local/var/macports/build/_opt_local_var_macports_sources_rsync.macports.org_release_ports_lang_ghc/work/ghc-6.10.1

/opt/local/var/macports/build/_opt_local_var_macports_sources_rsync.macports.org_release_ports_devel_gtk2hs/work/gtk2hs-0.10.0

2.3 Ubuntu

2.3.1 Install Prerequisites

Open up the package manager and make shure the following packages are installed:

• glib-devel

• gtksourceview2-devel

• make

• gcc

• g++

• libgmp3-dev

2.3.2 Install GHC (Once 6.10.1 is in the universe repository)

At the time of writing only 6.8.2 was available in the Ubuntu universe repository.
If you have ghc 6.8 installed then we recomend you uninstall it to avoid con�icts.
sudo apt-get remove ghc6

sudo apt-get build-dep ghc6

wget http://www.haskell.org/ghc/dist/6.10.1/ghc-6.10.*-src.tar.bz2

wget http://www.haskell.org/ghc/dist/6.10.1/ghc-6.10.*-src-extralibs.tar.bz2

tar xjf ghc-6.10.1-src.tar.bz2

tar xjf ghc-6.10.1-src-extralibs.tar.bz2

cd ghc-6.10.1

./configure --prefix=/home/username/ghc

make

make install

export $PATH=$PATH:/home/username/ghc/bin

2.3.3 Install Cabal

wget http://www.haskell.org/cabal/release/cabal-install-0.6.2/cabal-install-0.6.2.tar.gz

tar -xvjpf cabal-install-0.6.2.tar.gz

cd cabal-install-0.6.2

./bootstrap

9

2.3.4 Install Gtk2Hs

Check the output of ./con�gure, at the end it should list the haskell packages it is going
to build. Leksah needs gtksourcevie, gtk and glib (if you have installed glib-devel and
gtksourceview2-devel then these should be enabled). If there are any that are not going
to be installed that you would like, then you most likely need to install the corresponding
-devel ubuntu package.
wget http://downloads.sourceforge.net/gtk2hs/gtk2hs-0.10.0.tar.gz

tar -xvjpf gtk2hs-0.10.0.tar.gz

cd gtk2hs-0.10.0.tar.gz

./configure

make

sudo make install

2.3.5 Add Cabal To Your PATH

Cabal can install packages globally or local to the current user (use �user and �global to
select which). We recommend you add the following to your ~/.bash_pro�le
PATH=$PATH:/home/sean/.cabal/bin

export PATH
If you change your path you will have to restart X to make it apply automatically or

you can type
source ~/.bash_profile

each time you open a new terminal until you get a chance to restart X.

2.3.6 Install Leksah

cabal update

cabal install leksah

2.4 MS Windows

In the future I hope we can provide a Windows installer. For now the situation is
di�cult, because the latest gtk2hs Windows installer that works for Leksah is 0.10.0,
which only works with GHC 6.10.2. Build 0.10.1 of gtk2hs has an issue with the the
GTKSourceView2 component. A windows installer for GHC 6.10.4 is missing. Please
write to the gtk2hs users mailing list if you want this situation to improve.
This is what you can do to get leksah running on Vista:

1. Install Cygwin with the online installer from http://www.cygwin.com/ Select pack-
ages wget, curl and gcc-core in adition to the standard selection. I used the 1.7.0
version of Cygwin setup, but it is still beta.

2. Install your GHC from http://www.haskell.org/ghc.

3. Install gtk2hs from http://www.haskell.org/gtk2hs/ or Sourceforge.net.

10

4. Download the GHC sources from http://www.haskell.org/ghc. Open a Cygwin
shell, make a directory Haskell, copy the source tarballs here and unpack them.
Take care that the directory name has no blanks in its path!

5. cabal install leksah. (Guess it is already installed with 6.10.2?)

6. You may wish to install a full Unicode monospace font if you want to use the source
candy feature of leksah. e.g. Everson Mono or Deja Vu Sans Mono or perhaps the
GNU FreeFonts which are aesthetically pleasing.

7. Start leksah and give your Haskell directory as source root. Select the right font
from Help/Prefs.

8. Have fun with leksah, but remember it is a beta version!

11

Figure 1: FirstStart dialog

3 First start of Leksah

1. When you start Leksah for the �rst time, the �rst start dialog appears (1). You
have to specify folders, under which Haskell source code for installed packages can
be found. This can be any folder above the source directories. So �gure out what
this will be on your system. You have to click the Add Button after selecting the
folder.

2. If you use cabal install add the cabal install package directory to the �extract
packages from cabal-install� section. This means that leksah decompresses and
untars the sources, so they can be scanned by Leksah. This is kind of a hack
currently.

Later you can change this settings in the preferences pane in Leksah and you can
rebuild the metadata at any time. Details about metadata collection can be found
here: 6.5.

If you want to start from scratch again delete or rename the .leksah folder in your
home folder. Then you will see the �rst start dialog again.

1. Now Leksah collects information about all installed packages on your system. So
it may take some time, but at further starts only information for new packages will
be installed. Their will eventually be a bunch of errors on your command line, but
don't worry, it only means that Leksah has not succeeded to extract the source
locations and comments for certain modules or packages.

2. After starting up, Leksah will open its Main window in a standard con�guration (2).

12

Figure 2: After start

3. One way to start up, and probably the best way if you already have experience
with Haskell, will be to open an existing project. So select Package/OpenPackage
from the menu and open a Cabal �le of some project. A typical Leksah window
may then look like 3.

Alternatively you can start with a

3.1 Hello World example

Create a Package with one Executable (name of both can be the same)

• Package -> New and use the "Create Folder" button to make a new folder for the
package. Fill in your package identi�er including a version number.

• Click on the Dependencies tab (in the package editor). Type in "base" and click
"Add" (this is like the references in visual studio projects)

• Click on the Executables tab (in the package editor). Fill in an executable name
and put �Main.hs� in the ��le with main function� and click "Add".

• Click on Build �1 Build Info�. Add �src� to the list. This way your source �les
should all end up in the src sub directory.

13

Figure 3: Leksah with open project

• Click Save and Close

Add the Main module

• Click on the Modules tab (this is like the class browser in visual studio). Right
click and select Add Module. Put �Main� in the New Module box.

• Add main = putStrLn "Hello World"

Run it

• Package -> Con�gure

• Package -> Build

• Package -> Run

• Output will be in the Log window

Debug it

• Switch debugger Mode on.

• Debug -> Show Debugger

14

• Select the word �main� in your code

• Right click and choose �Eval�

It is probably counter productive for new users to use Candy mode (converts some
common ascii based operators to Unicode alternatives) because all the tutorials use ascii.
Switch it o� when you get irritated.
For a further info refer to: http://en.wikibooks.org/wiki/Haskell.

15

http://en.wikibooks.org/wiki/Haskell

4 The Editor

Figure 4: File menu

The central functionality needed for development is to edit
Haskell source �les. Leksah uses the GtkSourceView2 widget
for this. It provides editing, undo/redo, syntax highlighting
and other features. In the �le menu (4) you have the usual
functionality to open, save, close and revert �les. You can
as well close all �les, and all �les which are not stored in or
below the top folder of the current project (this is the folder
where the .cabal �le resides). Leksah does not store backup
�les. Leksah detects if a �le has changed which is currently
edited and queries the user if a reload is desired. When you
open a �le which is already open, leksah queries if you want
to make the currently open �le active, instead of opening it
a second time (Leksah does not support multiple views on a �le, but if you open a �le a
second time, it's like editing the �le two times, which makes little sense).
When a �le has changed compared to the stored version, the �le name is shown in red

in the notebook tab. If you want to change to a di�erent bu�er you can open a list of
all open bu�ers by pressing the right mouse button, while the mouse is over a notebook
tab. You can then select an entry in this list to select this �le. (See 4.4 for a better way
to switch between source �les.
On the right side in the status bar you can see the line and column, in which the cursor

currently is; and if overwrite mode is switched on. In the second compartment from the
left you can see the currently active pane, which is helpful if you want to be sure that
you have selected the right pane for some operation.

Figure 5: Edit menu

In the edit menu (5) you �nd the usual operations: undo,
redo, cut, copy, paste and select all. In addition you can
comment and un-comment selected lines in a per line style
(�).
Furthermore you can align some special characters (=,<-

,->,::,|) in selected lines. The characters are never moved to
the left, but the operation is very simple and takes the right-
most position of the special character in all lines, and inserts
spaces before the �rst occurrence of this special characters
in the other lines for alignment.

4.1 Find and Replace

Leksah supports searching in text �les. When you select
Edit/Find from the menu the �nd bar will open (6) and you
can type in a text string. Alternatively you can hit Ctrl-F or
select a text and hit Ctrl-F (This is a standard keystrokes.
Keystrokes can be con�gures, see 8.3). Hitting the up and
down arrow will bring you to the next/previous occurrence

16

Figure 6: Find bar

Figure 7: Grep pane

of the search string. Hitting Enter has a similar e�ect as the
down arrow. Hitting Escape will closes the �nd bar and sets the cursor to the current �nd
position. You have options for case sensitive search(c.S.), for searching only whole worlds
(Words) and for wrapping around (Wrap), which means that the search will start at the
beginning/end of the �le, when the end/beginning is reached. If their is no occurrence
of the search string the entry turns red.
You can search for regular expressions by switching on the Regex option. Leksah

supports regular expressions in the Posix style (by using the regex-posix package). When
the syntax of regular expressions is not legal, the background of the �nd pane turns
orange.
To replace a text enter the new text in the replace entry and select replace or replace

all.
The �nd bar supports as well to jump to a certain line number in the current text

bu�er.

4.1.1 Grep

For this feature the grep program must be on your path. You can then enter a search
string in the �nd bar and hit the Grep button. This will search for all occurrences for
the string in the folder and subfolder of the current package. Greps supports the search
for regular expressions. A pane will open (7), and in every displayed line the expression
was found. By clicking on the line, an editor is opened or brought to front and the focus
is set to the selected line. You can navigate between lines with the up and down keys.

17

4.2 Source Candy

Figure 8: Source candy example

When using Source Candy, Leksah reads and writes pure ASCII Code �les, but can
nevertheless show you nice symbols like λ.This is done by replacing certain character
combinations by a Unicode character when loading a �le or when typing, and replace it
back when the �le is saved.
The use of the candy feature can be switched on and o� in the menu and the preferences

dialog.
This feature can be con�gured by editing a .candy �le in the .leksah folder or in the

data folder. The name of the candy �le to be used can be speci�ed in the Preferences
dialog.
Lines in the *.candy �le looks like:
"\" 0x03bb --GREEK SMALL LETTER LAMBDA

"->" 0x2192 Trimming --RIGHTWARDS ARROW
The �rst entry in a line are the characters to replace. The second entry is the hex-

adecimal representation of the Unicode character to replace with. The third entry is an
optional argument, which speci�es, that the replacement should add and remove blanks
to keep the number of characters. This is important because of the layout feature of
Haskell. The last entry in the line is an optional comment, which is by convention the
name of the Unicode character.
Using the source candy feature can give you problems with layout, because the align-

ment of characters with and without source candy may di�er!

Leksah reads and writes �les encoded in UTF-8. So you can edit Unicode Haskell
source �les. When you want to do this, switch of source candy, because otherwise
Unicode characters may be converted to ASCII when saving the �le.

4.3 Completion

Leksah has the ability to auto complete identi�ers in text you type. Additionally the
Package, Module and Type of the id gets displayed if selected.
This completion mode can either be always on, or only be activated on pressing

Ctrl+Space (or a user de�ned keystroke). You can choose between these two possibilities
in the Preferences.
Leksah currently uses all names provided by the package scope for completion. So it

has no context sensitiveness, and doesn't provide locally de�ned names.

18

Figure 9: Completion

4.4 Using the Flipper to Switch Editors

You can change the active pane using a keyboard shortcut to bring up the �ipper. It lists
the most recently used panes �rst so they are easier to get to. The default shortcuts for
the �ipper are Ctrl+Tab and Ctrl+Shift+Tab or Ctrl+Page Down and Ctrl+Page Up.

4.5 Editor Preferences

Figure 10: Editor Preferences

When selecting Con�guration / Edit Prefs the preferences pane opens, which has a
selection called Editor (Figure 8), were you can edit preferences for the editor. Some of
the options you �nd here refer to visual elements, like the display of line numbers, the
font used, the display of a right margin and the use of a style �le for colors and syntax
highlighting.
You can set here the Tab size you want. Leksah always stores tabs as spaces to ease

the use of layout. (As you may know, otherwise only a tab size of 8 can be digested by

19

Haskell compilers).
1

Leksah o�ers as well to remove trailing blanks in lines, which you may choose as
default, because blanks at the end of lines make no sense in source code.

4.6 Further info

The work with the editor is in�uenced by other features

• For background building, which may save your �les automatically after every change
refer to 5.3.

• For information about editor preferences go to 4.5.

1Leksah has an option for storing the �les with standard UNIX line ends even on Windows, and not
using the infamous Cr/Lf combination. This is e.g. useful if Windows and other users commit to the
same repository. This may not work anymore since switching to unicode sources?

20

5 Packages

Figure 11: Package Menu

Leksah does not only support editing Haskell source �les,
but as well building the application or program you are de-
veloping. The concept of a package is used to handle a unit
of work for the development of some library or executable.
One instance of Leksah can only open one package at a time.
(It is a wish of many users to make this more �exible in the
way of e.g. Eclipse Workspaces). Leksah can store con�gu-
rations for packages separately (and does this by default), so
that you can switch between packages and get exactly back
to where you stopped when opening a di�erent package.
Leksah uses Cabal for package management, and opening

a package is done by opening a .cabal �le. So when you select
Package / Open Package from the menu, select the *.cabal
�le of the desired package. Leksah shows the currently active
package in the third compartment in the status bar.
To start with a new package select Package / NewPackage

from the menu. Then you have to select a folder for the
project, this is by convention the same name you will give
to your package. Then the package editor will open up, in
which you have to supply information about your package.

5.1 Package Editor

The package editor (12) is an editor for cabal �les. Since
cabal �les o�er complex options the editor is quite complex.
For a complete description of all options see the Cabal User's Guide. The package
editor does currently not support the cabal con�gurations feature. If you need cabal
con�gurations, you need to edit the cabal �les as a text �le. Since Leksah uses standard
cabal �les with no modi�cations this is no problem, and you can use Leksah with such
packages with no problem, just the package editor will not work for you. (We plan to
enhance the editor to support con�gurations in the future).
The minimum requirements for any package is to give a name and a version. Then

you will have to enter dependencies on other packages in the dependencies part of the
editor. This will be at least the base package.
Finally you have to specify an executable or a library that should be the result of your

coding e�ort. You do this in the Executable and Library part of the editor. Cabal gives
the possibility to build more then one executable from one package and to build a library
and executables from one package.
For an executable you enter a name, the source �le with the main function and a build

info. For a library you enter the exposed modules and a build info.
With build information you give additional information, e.g:

21

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Figure 12: PackageEditor 1

• where the sources can be found (relative to the root folder of the project, which is
the one with the cabal �le).

• what additional non-exposed or non main modules your project includes

• compiler �ags

• used language extensions in addition to Haskell 98 (These can also be speci�ed in
the source �les with pragmas)

• and many more ...

Because more then one executable and a library can be build from one package, it is
possible to have cabal �les with more then one build info. The package editor deals with
this by the buttons Add / Remove Build Info. Every build info gets an index number,
and for executables and a library you specify the index of the build info.

5.2 Building

The most frequently used functionality with packages is to make a build, which is possible
after a successful con�gure. When you start a build, you can see the standard output of
the Cabal build procedure in the Log pane.
A build may produce errors and warnings. If this is the case the focus is set to the �rst

error/warning in the Log and the corresponding source �le will open with the focus at

22

Figure 13: Error Pane

the point where the compiler reports the error. You can navigate to the next or previous
errors by clicking on the error or warning in the log window, or by using the menu, the
toolbar or a keystroke.
In the statusbar the state regarding to the build is displayed in the third compartment

from the right. It reads Building as long as a build is on the way and displays the
numbers of errors and warnings after a build.

This is the symbol, which initiates a build when clicked on the toolbar (Ctrl-b).
The error pane (13) shows the errors in the form of a table and provides the same

functionality you �nd in the log, but it may be more convenient to use.

5.3 Background Build

Leksah can run builds while you work and highlight errors as it �nds them. This works
with a timer that runs continuously in the background. If there are changes made to any
open �le it . . .

• interrupts any running build by sending SIGINT (sadly this step is OSX and Linux
only at this point)

• waits for any running build processes to �nish

• saves all the modi�ed �les

• starts a new build

Because we can't interrupt the build on windows there is an option in the Leksah build
preferences to have it skip the linking stage in background builds. This reduces the
delay before a next build starts. Background build and linking can be con�gured in the
preferences and as well switched on and o� from the toolbar.

23

Figure 14: Package Flags

This is the symbol, which switches background build on or o� in the toolbar.

Linking with background build on or o�.

5.4 Build system �ags

As you can see in the package menu (11) you can do more operations with packages,
which are mostly provided by the Cabal system. You can clean, con�gure, build and if
you have build an executable run your program. And other operations like building a
source distribution and building haddock documentation. For more details about these
operations (as said before) consult the Cabal User's Guide.
Since many of these operations can take additional �ags you can enter these by selecting

Package / Edit �ags. Then the Flags pane opens up (Figure 12). For example haddock
documentation for the leksah source will not be build, because it is not a library unless
you pass the �executable �ag. The �ags are stored in a �le called IDE.�ags in the root
folder of the project.
If you want to link with the locally installed libraries (ghc-pkg) Haskell packages locally,

set: con�g �ags �user

5.5 Import Helper

A frequent and annoying error is the Not in scope compiler error. In the majority of
cases it means that an import statement is missing and to write import statements is a
frequent and annoying task. In Leksah if you need to add an import, you can choose Add

24

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Figure 15: Import dialog

import from the context menu in the log pane. Leksah will then add an import statement
to the import list. If their is more then one module that exports this identi�er, a dialog
will appear which queries you about the module you want to import from (15).
Leksah then adds a line or an entry to the import list of the a�ected module with

the compiler error. It adds as well an entry in the lop pane. Leksah imports individual
elements, but imports all elements of a class or data structure if one of them is needed.
The import helper can work with quali�ed identi�ers and will add a correct import
statement. You can as well select add all imports from the context menu, in which case
all Not in scope errors will be treated sequentially.

When Leksah does not �nd an identi�er update the Leksah database.

Update Metadata

The import helper just looks in imported packages, so if you miss a package import,
you have to �x it manually.
Obviously some not in scope errors have other reasons, e.g. you have misspelled some

identi�er, which can't be resolved by adding imports.

25

6 Module Browser and Metadata

sort symbol

function

data

constructor

slot

type

newtype

class

member

instance

rule

Table 1: Sorts of identi-
�ers

Leksah collects data about the exported modules of all in-
stalled Haskell packages on your system. It does this by
reading the Haskell interface �les (from GHC). In addition
it adds source positions and comments of packages, for which
a cabal �le with the corresponding source �les can be found.
The package you work on is treated di�erently, as not only
external exported entities are collected, but all exports from
all modules are collected. This makes it possible to get in-
formation about identi�ers:

• Which packages and modules export this identi�er?

• What is the sort of the exported identi�er?

If the source was found:

• What is the comment for this identi�er?

• Where is the source with position?

If you like to get information about some identi�er in the
code, the easiest way is to press Ctrl and double click

on it.
More precisely the operation is not triggered by the double

click operation, but by the release of the left button. So if
the double click does not select the right area for a special
id like ++, you can select the desired characters with the left button and then release it
while you hold down the Ctrl key. If the id is known unambiguously the modules and
info pane will show information about it. If more then one possibility exist the search
pane will open and present the alternatives.
The current Leksah metadata does not contain de�nitions local to a module. So names

which are not exported will not be found in the metadata. We plan to change this for
the current project for future versions. 2

You can see the sort of expression by the icon before the identi�er. The following sorts
of identi�ers are currently known in the Metadata:

6.1 The Modules Pane

In the modules pane (16) you get information about modules and their interface. The
displayed information depends on the open package. If no package is open only the
system scope has information. (If a package is open, it's name is displayed in the third
subdivision from the left of the status bar.)

2We started with the �global� approach from the intuition, that it takes most of our time to �nd
something that is not already imported and �known�. A local de�nition can be easily �nd by a text
search.

26

Figure 16: Modules pane

We assume there is an open package. You can then select the scope of the displayed
information with the radio button on top of the modules pane. The Local scope shows
only modules which are part of the current project. The Package scope shows all modules
of the package and all packages which the current package depends on. The System scope
shows all modules of installed packages of the system. (You can get the list of all installed
packages with ghc-pkg list. Leksah scans the user and the system package database, when
both are present).
If the Blacklist toggle button is selected, the packages in the blacklist are not displayed.

The information is accessible, but the modules are excluded from the modules browser.
3. The Blacklist can be edited in the preferences pane.
If you select a module in the modules list, its interface is displa

yed in the interface list on the right. You can search for a module or package by selecting
the modules list and typing some text. With the up and down arrows you �nd the
next/previous matching item. With the escape key or by selecting any other GUI element
you leave the search mode.

If this icon shows up, Leksah has found a source �le or source position for this
element. You can open the source �le, or bring it to the front and display the source for
the selected location with a double click on the element. (the same can be done with
selecting Go to de�nition from the context menu.

This is reexported from another module.

3I invented the blacklist mainly for the GHC package, when will they use hierarchical module names?

27

By selecting an element in the Interface List the so called Info Pane is shown with
additional information.
The quickest way to edit some project �le is to go to the modules pane, select local

scope and �nd the module by entering text, and double click for editing the �le.

Figure 17: Construct module dialog

The easiest way to add a new module is by selecting Add module from the context
menu of the modules pane. The Construct Module dialog will open (17). You have to
enter the name of the module, the source path to use if alternatives exist and, when the
project is a library, if the module is exposed. Leksah will construct the directory, modify
the cabal �le and construct an empty module �le from a template.
The modi�cation of the cabal �le will currently only happen, if it does not contain

con�gurations.

6.2 The Info Pane

The Info Pane (18) shows information about an interface element, which may be a func-
tion, a class, a data de�nition, a type It shows the identi�er, the package and module
that it is exported by, it's Haskell type and if found a comment.
If you select initiate an identi�er search in an editor, and information about this

identi�er is available in the package scope, it is automatically displayed in the info pane.
Again, the easiest way to do this is to double click on an identi�er while pressing Ctrl.
Remember that only statically collected information is available this way, and only

about items which are exported by some module.

Figure 18: Info pane

28

Figure 19: Search pane

If a source location is attached, you can go to the de�nition by clicking the Source
button.
You can select the module and the interface element in the modules pane by clicking

the Modules button.
With the Refs button a pane opens which displays modules which uses this element.
With the Docu button you can initiate an external search in a browser with e.g. hayoo

or Hoogle, depending on the con�guration in the Preferences.
With the Search button you can initiate a metadata search for the identi�er.

6.3 The Search Pane

You can search for an identi�er in the metadata by typing in characters in the entry at
the bottom of the pane. The search result depends on the settings in the search pane
(19). You can choose:

1. The scope in which to search, which can be local, package or system.

2. The way the search is executed, which can be exact, pre�x or as a regular expression.

3. You can choose if the search shall be case sensitive or not.

The result of the search is displayed in the list part of the Search pane.
You can see if the module reexports the identi�er, or if the source of the identi�er is

reachable. When you single click on a search result, the info pane shows the corresponding
information. If you double click on an entry, the modules and info pane shows the
corresponding information.
If you double click on an identi�er and press Ctrl in a source bu�er, it is a case sensitive

and exact search in the package scope. It does not depend on the selection in the search
pane.

29

Figure 20: References Pane

6.4 The References Pane

As said in the end of the last section, this pane shows which modules uses a certain
element. The element is displayed in the top, and the modules which import it are
displayed in the list box. If you double click on an entry in the list box, the corresponding
source will be opened if possible. Then a text search on the selected element is initiated.

6.5 Metadata collection

Figure 21: Metadata
menu

Metadata collection depends on the con�guration and can
be manually triggered.
If you select Metadata / Update Project the metadata

for the current project is collected from the .hi �les and the
source �les. You should select this if the metadata of the
current project is out of sync.
If you select Metadata / Update Lib Leksah checks if a

new library has installed and if this is the case collects meta-
data for it.
In the Metadata part of the preferences (22) you can edit

the settings concerning metadata collection.
Metadata collection is a di�cult point, because it depends on the installation, envi-

ronment, the installed packages, etc. However, to make good use of leksah it is highly
desirable to have metadata with sources available for the packages you really need. So
here we explain how metadata collection works:

1. Since cabal install has sources only as compressed tar archives on your machine,
leksah needs to unpack this. You can see if this works by browsing the folders. You
can initiate this step by calling leksah -x - n. If only root has write access to some
cabal packages do a: sudo leksah -x -n (�Extract �NoGui).

2. Now leksah looks for all cabal �les it can �nd below the source folders. From this
information the �le source_packages.txt in the .leksah folder is written. If you
miss sources for a package in Leksah, consult this �le if the source place of the

30

Figure 22: Metadata Preferences

package has been correctly found. You can run this step by: leksah -s -n (�Sources
�NoGui).

3. The metadata collection itself proceeds in two steps: A) Extract info from .hi �les,
which is usually no problem. B) Add source locations and comments by parsing
the sources. This can be a problem because of preprocessing, header �les, language
extensions, etc. The result is stored in a folder under the .leksah folder (under your
home folder). The folder will be named after the compiler version (e.g. ghc-6.8.1).
In this folder for every package a metadata �le is stored (e.g. binary-0.4.1.pack).
These �les are in binary format.
You can rebuild the whole metadata when you start Leksah with the -r -n option
(�Rebuild �NoGui).
You can update the metadata with: leksah -c -n (�Collect �NoGui)
If you have a problem with a certain package, remove its metadata �le , e.g. rm
~/.leksah/ghc-.../binary*. And then do a collect: leksah -c -n. Look for error
messages in the Console to see if some problem is reported.

4. For the current package a slightly di�erent procedure is used, because leksah not
only looks for exported library entities, but for all exports of every module. The
written metadata �le has the extension .packw.

31

7 Debugger

Figure 23: Debug & Bu�er
menu

You can switch Debugger mode on from the toolbar:

Switch debugger Mode on or o�.
After switching debugger mode on, you can see that pack-

ages and modules for your current project are loaded into
GHCi.
When debugger mode is on, you see that the menu entries

from the Debug menu are no longer disabled, and the context
menu of source bu�ers have entries enabled as well, that were
disabled when not in debugger mode.
You can open the debugger group pane by choosing Debug

/ Show Debugger.
You can now:

• Evaluate expressions in the interpreter and observe
the result.
Select the expression in a source bu�er. Select eval
from the context menu. The result of the evaluation
is shown in the log window and as it in the variables
pane.
The debugger has a pane which is for writing down
evaluation expressions. The pane is a Haskell source
bu�er, which has the reserved name _Eval. Its con-
tents is saved with the session.
Choose �Eval & Insert�, to insert a string representa-
tion of the result after the selected expression.

• Determine the type of an expression: Select the ex-
pression in a source bu�er. Select Type from the con-
text menu.

• Get info about an identi�er: Select Info from the
context menu.

• Get the kind of a type.: Select Kind

• Step through code: Select the expression in a source
bu�er. Select step from the context menu.

• or Step through code: Set breakpoints by putting
the cursor at the breakpoint and select set breakpoint
from the context menu. Run your application or test-
cases and start stepping at the breakpoint.

32

Figure 24: Debug Pane

• Attention: If you select a text, the breakpoint will
be set for the implementation of this identi�er

• You can observe the current breakpoints in the break-
points pane. You can remove breakpoints from this
pane.

• Use the toolbar (or shortcuts) for stepping:

Step (F6), Step local (F7)

Step in module (F8), Continue (F9)

• While stepping through code, you can observe variables in the variables pane.
You can print or force a variable from the context menu of the variables pane. You
can update the pane from the context menu.

• You can observe an execution trace in the traces pane. Navigation in the traces
pane is currently not supported (:back, :forward).

• You can query information about the current state of GHCi from the Debugger
menu. E.g. Show loaded modules, Show packages and Show languages.

• You can directly communicate with GHCi by evaluating commands. E.g. �:set ...�

For further information about the GHCi debugger, please read the section 2.5. (The
GHCi Debugger) of the GHC user manual.
The Debugger is the newest addition to Leksah and is still in an experimental stage.

So please do not expect to much in the moment.

33

8 Con�guration

Leksah is highly customizable. Here it is explained how this works.

8.1 Layout

Figure 25: View menu

In Leksah there may be an active pane. The name of this
pane is displayed in the second compartment from the left
side in the status bar. Some actions like moving, splitting,
closing panes or �nding or replacing items in a text bu�er
act on the current pane, so check the display in the status
bar to see if the pane you want to act on, is really the active
one.
The layout of the Leksah window contains areas which

contain notebooks which contain so called panes. The di-
vision between the two areas is adjustable by the user by
dragging a handle. The areas form a binary tree, although
this tree is not visible to the user. Every area can be split
horizontally or vertically. Panes can collapsed, the e�ect of
collapsing depends on the position of the pane in the binary
layout tree.
Panes can be moved between areas in the window. This

can be done by dragging the notebook tab, and release it on
the frame of another notebook. Alternatively you can use
keystrokes (Shift Alt Arrow) to move panes around.
The tabs of notebooks can be positioned at any of the four directions, or the tabs can

be switched o�. Note that holding the mouse over the tabs and selecting the right button
brings up a menu of all panes in this area, so that you can for example quickly select one
of many open source bu�ers.
The layout will be saved with sessions. The session mechanism will be explained in

8.2.4

In the initial pane positions part of the Preferences, you can con�gure the placement
of panes. Panes belongs to categories, and a category specify a path were a pane will
open (26).

8.1.1 Group panes

Before we invented group panes, a notebook could only contain atomar panes. Now it
can as well contain group panes, which have a layout on their own and may contain
arbitary other panes. The debug pane is an example for a group pane. This gives you
the possibility to arrange the subpanes in a debugger pane as it �ts best for you.
You can add a new group by selecting View / Group from the menubar. You have to

give a unique name for any group. Then you can arrange panes in the group as you like.

4 Currently there is no way to load di�erent layouts independent of the other data stored in a sessions.

34

Figure 26: Initial pane position

When closing a group, and the group is not empty, you have to con�rm that this is what
you really want.

8.1.2 Detached windows

This feature is useful if you want to use Leksah on multiple screens. You can select a
notebook and choose View / Detach from the menubar. Then this notebook is opened
in a new window, which you can then move to another screen.
If you close the detached window, the contents goes back to the place where it was

before detaching.
When you close Leksah, the state of detached window is remembered, and they will

be reopened when you restart Leksah.
It is possible to drag and drop panes between windows. But splitting and collapsing of

panes is disabled for detached windows. So a recommended way to use this feature is to
split a pane, arrange the panes that you want to detach in the area of the new notebook.
Select the new notebook and detach.
The detached windows have no menubar, toolbar and statusbar on their own. This

may be a problem, because when you want to select a menu entry, the focus may change
from a pane in the detached window to a pane in the main window, and you may not be
able to do what you want. However keystrokes works �ne, and that is how we use this
feature.
This is a new addition in this release, and the handling of detachement may be a bit

unconveniant. Let us know what you need.

8.2 Session handling

35

Figure 27: Session menu

When you close Leksah the current state is saved in the
�le Current.session in the ~/.leksah folder. A session con-
tains the layout of the window, its population, the active
package and some other state. When you restart Leksah it
recovers the state from this information. When you close a
package, the session is saved in the project folder in the �le
IDE.session. When you open a project and Leksah �nds a
IDE.session �le in the folder of the project you are going to open, you get prompted if
you want to open this session. This should help you to switch between di�erent packages
you are working on.
Beside of this you have the possibility to store and load named sessions manually by

using the session menu. Actually you may live well without using this feature.
You can as well choose to mark Forget Session, if you don't want the current session

to be stored. This can be useful, if something goes wrong (e.g. you hit accidentally Ctrl
- 0 and the layout collapses completely).

8.3 Shortcuts

You can con�gure the keystrokes by providing a .keymap �le, which can either be in the
.leksah folder or in the data folder. The name of the key map �le to be used can be
speci�ed in the Preferences dialog. A line in the .keymap �le looks like:
<ctrl>o -> FileOpen "Opens an existing �le"
Allowed Modi�ers are <shift> <ctrl> <alt> <apple> <compose>. <apple> is the

Windows key on PC keyboards. <compose> is often labeled Alt Gr. It is as well possible
to specify Emacs like keystrokes in the following way:
<ctrl>x/<ctrl>f -> FileOpen "Opens an existing �le"
The comment on the right will be displayed as tool tips on top of toolbar buttons, if

such exist for this action.
The name of the action can be any one of the ActionDescr's given in the action function

in the Module IDE.Menu.
Whenever you call an action, by a menu, a toolbar or a keystroke, the keystroke with

its associated ActionsString is displayed in the Status bar in the leftmost compartment.
Every keystroke shall obviously only be associated with one action, and more important

every action may only have one associated keystroke.
Simple keystrokes are shown in the menu, but Emacs like keystrokes are not. This is

because simple keystrokes are delegated to the standard GTK mechanism, while other
keystrokes are handled by Leksah.

8.4 Con�guration �les

Leksah stores its con�guration in a directory called ~/.leksah under your home folder.
The �le Default.prefs stores the general Preferences. These Preferences can be edited

in a dialog by choosing Con�guration / Edit Prefs from the menu. If this �le is not
available the Default.prefs �le from the installed /data folder will be used.

36

The Current.session �le stores the state of the last session, so that Leksah will recover
the state from the last session. If this �le is not available it will be taken from the
installed /data folder.
The source_packages.txt �le stores source locations for installed packages. It can be

rebuild by calling Leksah with the -s or �Sources argument . Do this after you moved
your source or added sources for previous installed packages without sources.
The folder will contain one or many other folders (e.g. ghc-6.8.1). In this folder

collected information about installed packages for a compiler version is stored. (e.g.
binary-0.4.1.pack). These �les are in binary format. If you start Leksah with the -r or
�Rebuild argument, it cleans all .pack �les and rebuilds everything.
Files for Keymaps and SourceCandy may be stored in the ~/.leksah folder and will be

found according to the name selected in the Preferences Dialog. Leksah �rst searches in
this folder and after this in the /data folder.

37

9 The Project

The development of an IDE is a big issue, so Leksah is intended to become more and
more a community project. If you are a user or just test Leksah, we would appreciate to
here from you. Everyone is invited to contribute. That can be development, supplying
error reports, spreading the word, providing keymap and candy �les, providing a tutorial,
caring for a platform . . .
Possible extension and enhancements are:

• Workspaces

• Package Editor with con�gurations

• Context enriched completion

• Object browser

• Extension support with plugins by libraries

• Add traces to Debugger

• Collect local metadata for the projects worked on

• Version Control (Darcs, ...)

• Testing (Quick check,...)

• Coverage (HPC,...)

• Pro�ling (Ghc Pro�ler,...)

• Refactoring (HaRe,...)

• FAD (Functional Analysis and Design,...)

• . . .

Acknowledgment
Thanks to Ricardo Herrmann for making the new Leksah logo.
Thanks to Sean Chapel for help with Ubuntu installation instructions.
Thanks to Wolfgang Jeltsch for being our most helpful user.
Thanks to Fabian Emmes, who created the very nice icons for the module browser.
Thanks to Funa which gave its sheer existence for Leksah
And thanks to the constructors of Haskell, Miranda and GHC.
Thanks to Moses Schön�nkel and Alonzo Church
and to the four cardinal points

38

10 Appendix

10.1 Command line arguments

Usage: ide [OPTION...] files...

-r --Rebuild Cleans all .pack files and rebuild everything

-c --Collect Collects new information in .pack files

-u FILE --Uninstalled=FILE Gather info about an uninstalled package

-s --Sources Gather info about pathes to sources

-v --Version Show the version number of ide

-d --Debug Write ascii pack files

-l NAME --LoadSession=NAME Load session

-n --NoGUI Don't start the leksah GUI

-x[FILE] --Extract[=FILE] Extract tars from cabal install directory

-h --Help Display command line options

10.2 The Candy �le

-- Candy file

"->" 0x2192 Trimming --RIGHTWARDS ARROW

"<-" 0x2190 Trimming --LEFTWARDS ARROW

"=>" 0x21d2 --RIGHTWARDS DOUBLE ARROW

">=" 0x2265 --GREATER-THAN OR EQUAL TO

"<=" 0x2264 --LESS-THAN OR EQUAL TO

"/=" 0x2260 --NOT EQUAL TO

"&&" 0x2227 --LOGICAL AND

"||" 0x2228 --LOGICAL OR

"++" 0x2295 --CIRCLED PLUS

--"::" 0x2551 Trimming --BAR

"::" 0x2237 Trimming --PROPORTION

".." 0x2025 --TWO DOT LEADER

"^" 0x2191 --UPWARDS ARROW

"==" 0x2261 --IDENTICAL TO

" . " 0x2218 --RING OPERATOR

"\" 0x03bb --GREEK SMALL LETTER LAMBDA

--"=<�<" 0x291e --

">�>=" 0x21a0

"$" 0x25ca

">�>" 0x226b -- MUCH GREATER THEN

"forall" 0x2200 --FOR ALL

"exist" 0x2203 --THERE EXISTS

"not" 0x00ac --NOT SIGN

"alpha" 0x03b1

"beta" 0x03b2

"gamma" 0x03b3

39

"delta" 0x03b4

"epsilon" 0x03b5

10.3 The Keymap �le

-- Default Keymap file for Leksah --Allowed Modifiers are <shift>

-- <ctrl> <alt> <apple> <compose> --<apple> is the Windows key

-- on PC keyboards --<compose> is often labelled Alt Gr.

-- The defined values for the keys can can be found at

-- http://gitweb.freedesktop.org/?p=xorg/proto/x11proto.git;a=blob_plain;f=keysymdef.h.

-- The names of the keys are the names of the macros without the prefix.

-- File

<ctrl>n -> FileNew "Opens a new empty buffer"

<ctrl>o -> FileOpen "Opens an existing file"

<ctrl>s -> FileSave "Saves the current buffer"

<ctrl><shift>s -> FileSaveAll "Saves all modified buffers"

<ctrl>w -> FileClose "Closes the current buffer"

<alt>F4 -> Quit "Quits this program"

--Edit <ctrl>z -> EditUndo "Undos the last user action"

<shift><ctrl>y -> EditRedo "Redos the last user action"

<ctrl>a -> EditSelectAll "Select the whole text in the current buffer"

<ctrl>f -> EditFind "Search for a text string (Toggles the "

F3 -> EditFindNext "Find the next occurence of the text string"

<shift>F3 -> EditFindPrevious "Find the previous occurence of the text string"

<ctrl>l -> EditGotoLine "Go to line with a known index"

<ctrl><alt>Right -> EditComment "Add a line style comment to the selected lines"

<ctrl><alt>Left -> EditUncomment "Remove a line style comment"

<alt><shift>Left -> ViewMoveLeft "Move the current pane left"

<alt><shift>Right -> ViewMoveRight "Move the current pane right"

<alt><shift>Up -> ViewMoveUp "Move the current pane up"

<alt><shift>Down -> ViewMoveDown "Move the current pane down"

<ctrl>2 -> ViewSplitHorizontal "Split the current horizontal"

<ctrl>3 -> ViewSplitVertical "Split the current vertical"

<ctrl>1 -> ViewCollapse "Collapse the panes"

-> ViewTabsLeft "Shows the tabs on the left"

-> ViewTabsRight "Shows the tabs on the right" -> ViewTabsUp "Shows the tabs of the on the top"

-> ViewTabsDown "Shows the tabs on the bottom"

-> ViewSwitchTabs "Switches tabs visible or invisible "

<ctrl>t -> ToggleToolbar

<ctrl>b -> BuildPackage

<ctrl>r -> AddAllImports

<ctrl><alt>r -> RunPackage

<ctrl>j -> NextError

<ctrl><shift>j -> PreviousError

<ctrl>m -> ShowModules

<ctrl>i -> ShowInfo

<ctrl><shift>e -> EditAlignEqual

<ctrl><shift>l -> EditAlignLeftArrow

<ctrl><shift>r -> EditAlignRightArrow

<ctrl><shift>t -> EditAlignTypeSig

<alt>i -> AddOneImport

<alt><shift>i -> AddAllImports

-- "For the next to entries the <ctrl> modifier is mandatory"

<ctrl>Page_Up -> FlipUp "Switch to next buffer in reverse recently used oder"

<ctrl>Page_Down -> FlipDown "Switch to next buffer in recently used oder"

<ctrl>space -> StartComplete "Initiate complete in a source buffer"

F6 -> DebugStep

F7 -> DebugStepLocal

F8 -> DebugStepModule

F9 -> DebugContinue

40

	Introduction
	Further Information
	Release Notes
	Version 0.6 Beta Release Juli 2009
	Version 0.4 Beta Release February/March 2009
	Version 0.1 Alpha Release February 2008

	Installing Leksah
	Generic Installation Instructions
	Install GHC (Glasgow Haskell Compiler)
	Install Cabal
	Install Gtk2Hs
	Install Leksah
	Where Things Are Installed
	Post installation steps

	OS X (using MacPorts)
	Install MacPorts
	Set up ~/.profile
	Update MacPorts
	Set Variants To Use Quartz (Optional)
	Install
	Make It Look Nice
	Point Leksah At The Source

	Ubuntu
	Install Prerequisites
	Install GHC (Once 6.10.1 is in the universe repository)
	Install Cabal
	Install Gtk2Hs
	Add Cabal To Your PATH
	Install Leksah

	MS Windows

	First start of Leksah
	Hello World example

	The Editor
	Find and Replace
	Grep

	Source Candy
	Completion
	Using the Flipper to Switch Editors
	Editor Preferences
	Further info

	Packages
	Package Editor
	Building
	Background Build
	Build system flags
	Import Helper

	Module Browser and Metadata
	The Modules Pane
	The Info Pane
	The Search Pane
	The References Pane
	Metadata collection

	Debugger
	Configuration
	Layout
	Group panes
	Detached windows

	Session handling
	Shortcuts
	Configuration files

	The Project
	Appendix
	Command line arguments
	The Candy file
	The Keymap file

