
Snap und Heist - HaL7

Halle (Saale), Germany

July 13 2012

Matthias Fischmann & Sönke Hahn

{sh,mf}@zerobuzz.net

Installation

I darcs get

http://patch-tag.com/r/shahn/hal-snap-2012/ (or
open it in browser)

I cabal install snap -fhint

I snap --help

Snap Overview: Features

I Stand-alone, high-performance HTTP server.

I HTML template rendering with Heist.

I Snaplets for component-based development.

I Snap core provides

I Snap.Snaplet.Heist
I Snap.Snaplet.Session
I Snap.Snaplet.Auth

Overview: Snap Code Base

(as of 2012-07-08)

I ‘cabal list snaplet’ matches 12 packages:

snaplet-acid-state snaplet-environments snaplet-hdbc
snaplet-i18n snaplet-recaptcha snaplet-redis
snaplet-redson snaplet-sedna snaplet-tasks . . .

I github search for ‘snaplet’ yields 26 results:

snap-guestbook gruzeSnaplet snaplet-persistence . . .

Alternatives to Snap (1)

I http://www.yesodweb.com/

I http://happstack.com/

All three frameworks are Haskell, so you always get great
performance, high-quality byte code, robust threading etc.

Trade-offs in the details:

I http://softwaresimply.blogspot.de/2012/04/hopefully-fair-
and-useful-comparison-of.html

http://www.yesodweb.com
http://happstack.com
http://softwaresimply.blogspot.de/2012/04/hopefully-fair-and-useful-comparison-of.html
http://softwaresimply.blogspot.de/2012/04/hopefully-fair-and-useful-comparison-of.html

Alternatives to Snap (2)

I http://www.haskell.org/haskellwiki/Web/Frameworks
contains pointers to 6 more projects.

I http://playframework.org/
java / scala

http://www.haskell.org/haskellwiki/Web/Frameworks
http://playframework.org

Snap Overview: Performance (1)
http://news.ycombinator.com/item?id=1380405

http://news.ycombinator.com/item?id=1380405

Snap Overview: Performance (2)

http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-
language-benchmarks

http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-language-benchmarks
http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-language-benchmarks

Snap Overview: Performance (3)

http://snapframework.com/blog/2010/11/17/snap-0.3-
benchmarks

http://snapframework.com/blog/2010/11/17/snap-0.3-benchmarks
http://snapframework.com/blog/2010/11/17/snap-0.3-benchmarks

Snap’s Software Stack

I cabal and ghc to build a snap application

I snap library

I snap executable (for ‘init’ only)

I applications built with snap are web servers

I stand-alone
I as a sub-site behind nginx/apache/. . .

I documentation

I snap website
I haddock
I hoogle

The first Snap session

I snap init

I cabal install -fdevelopment

I run the executable

I point your browser to http://localhost:8000

http://localhost:8000

-fhint

with running server:

I change source code

I click reload in browser

I be amazed!

I changed source code modules are

I located,
I recompiled, and
I linked on the fly!

I compile time errors are displayed in browser

I (this is not are a security issue, unless you install your
production system with -fdevelopment :-)

Routing

Routing is a mapping of URLs to Handlers

addRoutes [("login/", handleLogin :: Handler)

, ("preferences/", editPrefs :: Handler)

, ("static/", serveDirectory "static" :: Handler)

, ...

]

type Handler = ?

-- Something like: Request -> Response

Handlers

Snap has its own Handler Type:

data Handler g l a

Handler g l is a Monad. It can

I write to the body of the HTTP response;

I modify the HTTP response;

I read the HTTP request object;

I read GET/POST parameters;

I do IO-stuff (via liftIO);

I throw and catch exceptions (see also: wrapHandlers);

I re-route (refuse to respond to a request);

I access two Snap states (global and snaplet-local).

Snaplets

Motivation

I Parts of websites should be composable

I Parts should be self-contained with minimal interface

I Composition of these parts should be easy and safe

Proposed solution: Snaplets

Creating Websites by Composing Snaplets

Example of a snaplet tree:

What are Snaplets?

Snaplets have their own

I initialisation procedure,

I state (per request),

I URL-Path,

I URL-Routing,

I configuration,

I filesystem directory,

I set of handlers to access their functionality.

The Two States

A Handler

Handler g l a

has always two states:

I the global state g

the root node of the snaplet tree

I the local state l

the state of the local snaplet

The two states allow for explicit definition of what snaplet handlers
can access.

Accessing other Snaplets

Lenses

Snap uses lenses as a way to access snaplets by moving around the
snaplet tree stored in App. A lense is used in a handler of one local
state to call a handler on another local state.

Lens Application (Snaplet Wiki)

provides

I getter: Application -> Snaplet Wiki

I setter: Snaplet Wiki -> Application -> Application

I . . .

Lenses are generated by makeLens (Template Haskell)

Different possibilities for Intra-Snaplet-Communication

Mechanisms:

I direct child node access (with)

I sibling access (withTop)

I lense as handler argument

I lense stored in snaplet state

I via HasSnaplet class instance

Note:

I You will encounter most of these mechanisms in the Snap
code, even without using extra packages.

I All of them are sometimes the best choice.

I In the end, they are all just different ways of passing a lense.

snaplet-hdbc

Excersise: Connect the dbCounter function to a route.

Heist (1)

Heist is an independent library for dynamic HTML/XML template
rendering:

I simple tag / attribute substitution with templates (<bind>)

I including of templates in templates with name substitution
(<apply>)

I tag / attribute substitution with splices (haskell code)

I Templates are files (suffix: .tpl) that contain xml expressions
and that are processed at run time.

Heist (2)

Snap provides a snaplet for

I rendering directly into the HTTP response object maintained
in the application state

I maintaining splices inside the application state (local to
handlers and global to application)

more info:

I http://softwaresimply.blogspot.de/2011/04/heist-in-60-
seconds.html

I https://snapframework.com/docs/tutorials/heist/

http://softwaresimply.blogspot.de/2011/04/heist-in-60-seconds.html
http://softwaresimply.blogspot.de/2011/04/heist-in-60-seconds.html
https://snapframework.com/docs/tutorials/heist

Heist: bind (1)

<bind tag="longname">

Einstein, Feynman, Heisenberg, and Newton Research

Corporation Ltd.TM

</bind>

<p>

We at <longname/> have research expertise in many areas

of physics. Employment at <longname/> carries

significant prestige. The rigorous hiring process

developed by <longname/> is leading the industry.

</p>

Heist: bind (2)

Attribute substitution:

<bind tag="paragraph_class">editor_comment</bind>

<p class="${paragraph_class}">...</p>

The rendered output looks something like this:

<p class="editor_comment">

The foo identifier is substituted into the class

attribute of the paragraph tag.

</p>

Heist: apply (1)

Example: include navigation bar HTML sub-tree in different pages.

nav.tpl:

Home

FAQ

Contact

Heist: apply (2)

home.tpl:

<body>

<h1>Home Page</h1>

<apply template="nav"/>

<p>Welcome to our home page</p>

</body>

Heist: apply (3)

The navigation bar can make use of a sub-tree provided by apply
tag.

nav.tpl:

<p> you are on page: <content/></p>

Home

FAQ

Contact

Heist: apply (4)

home.tpl:

<body>

<h1>Home Page</h1>

<apply template="nav">

home

</apply>

<p>Welcome to our home page</p>

</body>

Heist: apply (5)

Advanced topics:

I Emulating multiple <content/>s

I Splices (programming xml sub-trees with Haskell)

Heist snaplets (1)

data App = App

{ _heist :: Snaplet (Heist App)

, ...

instance HasHeist App where

heistLens = subSnaplet heist

app :: SnapletInit App App

app = makeSnaplet name desc Nothing $ do

h <- nestSnaplet "" heist $ heistInit "templates"

...

return $ App h ...

where

name = "app"

desc = "An snaplet example application."

Heist snaplets (2)

handleLogin :: Handler App (AuthManager App) ()

handleLogin = heistLocal (bindSplices errs) $

render "login"

where

errs :: [(Text, Splice m)] = ...

routes = [("/login", with auth handleLogin)

...

Heist snaplets (3)

You can also define a generic handler and a generic route for all
paths with a certain prefix:

...

Not Covered

I Snap.Snaplet.Session

I Snap.Snaplet.Auth

I Advanced topics in routing (there was a tutorial on that
online somewhere?)

I digestive-functors
(https://github.com/tjroth/snapbase-proj.git)

https://github.com/tjroth/snapbase-proj.git

Homework :)

Snap efficient and robust, but it lacks infrastructure. Porting
simple little features from other frameworks such as rails into
snaplets would be a good exercise. The top 6 of the authors of this
slide set:

I tag cloud

I user preferences editor

I blog aka newsticker aka forum

I multi-user file system

I glue for JS text editor (possibly trivial)

I wiki

