/* ----------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2009 * * Registers used in STG code. Might or might not correspond to * actual machine registers. * * Do not #include this file directly: #include "Rts.h" instead. * * To understand the structure of the RTS headers, see the wiki: * http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree/Includes * * ---------------------------------------------------------------------------*/ #ifndef MACHREGS_H #define MACHREGS_H /* This file is #included into Haskell code in the compiler: #defines * only in here please. */ /* * Defining NO_REGS causes no global registers to be used. NO_REGS is * typically defined by GHC, via a command-line option passed to gcc, * when the -funregisterised flag is given. * * NB. When NO_REGS is on, calling & return conventions may be * different. For example, all function arguments will be passed on * the stack, and components of an unboxed tuple will be returned on * the stack rather than in registers. */ #ifndef NO_REGS /* NOTE: when testing the platform in this file we must test either * *_HOST_ARCH and *_TARGET_ARCH, depending on whether COMPILING_GHC * is set. This is because when we're compiling the RTS and HC code, * the platform we're running on is the HOST, but when compiling GHC * we want to know about the register mapping on the TARGET platform. */ #ifdef COMPILING_GHC #define alpha_REGS alpha_TARGET_ARCH #define hppa1_1_REGS hppa1_1_TARGET_ARCH #define i386_REGS i386_TARGET_ARCH #define x86_64_REGS x86_64_TARGET_ARCH #define m68k_REGS m68k_TARGET_ARCH #define mips_REGS (mipsel_TARGET_ARCH || mipseb_TARGET_ARCH) #define powerpc_REGS (powerpc_TARGET_ARCH || powerpc64_TARGET_ARCH || rs6000_TARGET_ARCH) #define ia64_REGS ia64_TARGET_ARCH #define sparc_REGS sparc_TARGET_ARCH #define darwin_REGS darwin_TARGET_OS #else #define alpha_REGS alpha_HOST_ARCH #define hppa1_1_REGS hppa1_1_HOST_ARCH #define i386_REGS i386_HOST_ARCH #define x86_64_REGS x86_64_HOST_ARCH #define m68k_REGS m68k_HOST_ARCH #define mips_REGS (mipsel_HOST_ARCH || mipseb_HOST_ARCH) #define powerpc_REGS (powerpc_HOST_ARCH || powerpc64_HOST_ARCH || rs6000_HOST_ARCH) #define ia64_REGS ia64_HOST_ARCH #define sparc_REGS sparc_HOST_ARCH #define darwin_REGS darwin_HOST_OS #endif /* ---------------------------------------------------------------------------- Caller saves and callee-saves regs. Caller-saves regs have to be saved around C-calls made from STG land, so this file defines CALLER_SAVES_ for each that is designated caller-saves in that machine's C calling convention. -------------------------------------------------------------------------- */ /* ----------------------------------------------------------------------------- The DEC Alpha register mapping Alpha registers \tr{$9}--\tr{$14} are our ``prize'' callee-save registers. \tr{$15} is the frame pointer, and \tr{$16}--\tr{$21} are argument registers. (These are off-limits.) We can steal some of the \tr{$22}-and-up caller-save registers provided we do the appropriate save/restore stuff. \tr{$f2}--\tr{$f9} are some callee-save floating-point registers. We cannot use \tr{$23} (aka t9), \tr{$24} (aka t10), \tr{$25} (aka t11), \tr{$27} (aka pv), or \tr{$28} (aka at), because they are occasionally required by the assembler to handle non-primitive instructions (e.g. ldb, remq). Sigh! Cheat sheet for GDB: GDB here Main map === ==== ======== s5 $14 R1 t1 $2 R2 t2 $3 R3 t3 $4 R4 t4 $5 R5 t5 $6 R6 t6 $7 R7 t7 $8 R8 s0 $9 Sp s2 $11 SpLim s3 $12 Hp t8 $22 NCG_reserved t12 $27 NCG_reserved -------------------------------------------------------------------------- */ #if alpha_REGS # define REG(x) __asm__("$" #x) # define CALLER_SAVES_R2 # define CALLER_SAVES_R3 # define CALLER_SAVES_R4 # define CALLER_SAVES_R5 # define CALLER_SAVES_R6 # define CALLER_SAVES_R7 # define CALLER_SAVES_R8 # define CALLER_SAVES_USER # define REG_R1 14 # define REG_R2 2 # define REG_R3 3 # define REG_R4 4 # define REG_R5 5 # define REG_R6 6 # define REG_R7 7 # define REG_R8 8 # define REG_F1 f2 # define REG_F2 f3 # define REG_F3 f4 # define REG_F4 f5 # define REG_D1 f6 # define REG_D2 f7 # define REG_Sp 9 # define REG_SpLim 11 # define REG_Hp 12 # define NCG_Reserved_I1 22 # define NCG_Reserved_I2 27 # define NCG_Reserved_F1 f29 # define NCG_Reserved_F2 f30 #endif /* alpha_REGS */ /* ----------------------------------------------------------------------------- The HP-PA register mapping We cater for HP-PA 1.1. \tr{%r0}--\tr{%r1} are special. \tr{%r2} is the return pointer. \tr{%r3} is the frame pointer. \tr{%r4}--\tr{%r18} are callee-save registers. \tr{%r19} is a linkage table register for HPUX 8.0 shared libraries. \tr{%r20}--\tr{%r22} are caller-save registers. \tr{%r23}--\tr{%r26} are parameter registers. \tr{%r27} is a global data pointer. \tr{%r28}--\tr{%r29} are temporaries. \tr{%r30} is the stack pointer. \tr{%r31} is a temporary. \tr{%fr12}--\tr{%fr15} are some callee-save floating-point registers. \tr{%fr8}--\tr{%fr11} are some available caller-save fl-pt registers. -------------------------------------------------------------------------- */ #if hppa1_1_REGS #define REG(x) __asm__("%" #x) #define REG_R1 r11 #define REG_R2 r12 #define REG_R3 r13 #define REG_R4 r14 #define REG_R5 r15 #define REG_R6 r16 #define REG_R7 r17 #define REG_R8 r18 #define REG_F1 fr12 #define REG_F2 fr12R #define REG_F3 fr13 #define REG_F4 fr13R #define REG_D1 fr20 /* L & R */ #define REG_D2 fr21 /* L & R */ #define REG_Sp r4 #define REG_SpLim r6 #define REG_Hp r7 #define NCG_Reserved_I1 r28 #define NCG_Reserved_I2 r29 #define NCG_Reserved_F1 fr8 #define NCG_Reserved_F2 fr8R #define NCG_Reserved_D1 fr10 #define NCG_Reserved_D2 fr11 #endif /* hppa */ /* ----------------------------------------------------------------------------- The x86 register mapping Ok, we've only got 6 general purpose registers, a frame pointer and a stack pointer. \tr{%eax} and \tr{%edx} are return values from C functions, hence they get trashed across ccalls and are caller saves. \tr{%ebx}, \tr{%esi}, \tr{%edi}, \tr{%ebp} are all callee-saves. Reg STG-Reg --------------- ebx Base ebp Sp esi R1 edi Hp Leaving SpLim out of the picture. -------------------------------------------------------------------------- */ #if i386_REGS #define REG(x) __asm__("%" #x) #ifndef not_doing_dynamic_linking #define REG_Base ebx #endif #define REG_Sp ebp #ifndef STOLEN_X86_REGS #define STOLEN_X86_REGS 4 #endif #if STOLEN_X86_REGS >= 3 # define REG_R1 esi #endif #if STOLEN_X86_REGS >= 4 # define REG_Hp edi #endif #define MAX_REAL_VANILLA_REG 1 /* always, since it defines the entry conv */ #define MAX_REAL_FLOAT_REG 0 #define MAX_REAL_DOUBLE_REG 0 #define MAX_REAL_LONG_REG 0 #endif /* iX86 */ /* ----------------------------------------------------------------------------- The x86-64 register mapping %rax caller-saves, don't steal this one %rbx YES %rcx arg reg, caller-saves %rdx arg reg, caller-saves %rsi arg reg, caller-saves %rdi arg reg, caller-saves %rbp YES (our *prime* register) %rsp (unavailable - stack pointer) %r8 arg reg, caller-saves %r9 arg reg, caller-saves %r10 caller-saves %r11 caller-saves %r12 YES %r13 YES %r14 YES %r15 YES %xmm0-7 arg regs, caller-saves %xmm8-15 caller-saves Use the caller-saves regs for Rn, because we don't always have to save those (as opposed to Sp/Hp/SpLim etc. which always have to be saved). --------------------------------------------------------------------------- */ #if x86_64_REGS #define REG(x) __asm__("%" #x) #define REG_Base r13 #define REG_Sp rbp #define REG_Hp r12 #define REG_R1 rbx #define REG_R2 r14 #define REG_R3 rsi #define REG_R4 rdi #define REG_R5 r8 #define REG_R6 r9 #define REG_SpLim r15 #define REG_F1 xmm1 #define REG_F2 xmm2 #define REG_F3 xmm3 #define REG_F4 xmm4 #define REG_D1 xmm5 #define REG_D2 xmm6 #define CALLER_SAVES_R3 #define CALLER_SAVES_R4 #define CALLER_SAVES_R5 #define CALLER_SAVES_R6 #define CALLER_SAVES_F1 #define CALLER_SAVES_F2 #define CALLER_SAVES_F3 #define CALLER_SAVES_F4 #define CALLER_SAVES_D1 #define CALLER_SAVES_D2 #define MAX_REAL_VANILLA_REG 6 #define MAX_REAL_FLOAT_REG 4 #define MAX_REAL_DOUBLE_REG 2 #define MAX_REAL_LONG_REG 0 #endif /* x86_64 */ /* ----------------------------------------------------------------------------- The Motorola 680x0 register mapping A Sun3 (mc680x0) has eight address registers, \tr{a0} to \tr{a7}, and eight data registers, \tr{d0} to \tr{d7}. Address operations have to be done through address registers; data registers are used for comparison values and data. Here's the register-usage picture for m68k boxes with GCC. \begin{tabular}{ll} a0 & used directly by GCC \\ a1 & used directly by GCC \\ \\ a2..a5 & callee-saved: available for STG registers \\ & (a5 may be special, ``global'' register for PIC?) \\ \\ a6 & C-stack frame pointer \\ a7 & C-stack pointer \\ \\ d0 & used directly by GCC \\ d1 & used directly by GCC \\ d2 & really needed for local optimisation by GCC \\ \\ d3..d7 & callee-saved: available for STG registers \\ fp0 & call-clobbered \\ fp1 & call-clobbered \\ fp2..fp7 & callee-saved: available for STG registers \end{tabular} -------------------------------------------------------------------------- */ #if m68k_REGS #define REG(x) __asm__(#x) #define REG_Base a2 #define REG_Sp a3 #define REG_SpLim d3 #define REG_Hp d4 #define REG_R1 a5 #define REG_R2 d6 #define MAX_REAL_VANILLA_REG 2 #define REG_Ret d7 #define REG_F1 fp2 #define REG_F2 fp3 #define REG_F3 fp4 #define REG_F4 fp5 #define REG_D1 fp6 #define REG_D2 fp7 #endif /* m68k */ /* ----------------------------------------------------------------------------- The DECstation (MIPS) register mapping Here's at least some simple stuff about registers on a MIPS. \tr{s0}--\tr{s7} are callee-save integer registers; they are our ``prize'' stolen registers. There is also a wad of callee-save floating-point registers, \tr{$f20}--\tr{$f31}; we'll use some of those. \tr{t0}--\tr{t9} are caller-save (``temporary?'') integer registers. We can steal some, but we might have to save/restore around ccalls. -------------------------------------------------------------------------- */ #if mips_REGS #define REG(x) __asm__("$" #x) #define CALLER_SAVES_R5 #define CALLER_SAVES_R6 #define CALLER_SAVES_R7 #define CALLER_SAVES_R8 #define CALLER_SAVES_USER #define REG_R1 16 #define REG_R2 17 #define REG_R3 18 #define REG_R4 19 #define REG_R5 12 #define REG_R6 13 #define REG_R7 14 #define REG_R8 15 #define REG_F1 f20 #define REG_F2 f22 #define REG_F3 f24 #define REG_F4 f26 #define REG_D1 f28 #define REG_D2 f30 #define REG_Sp 20 #define REG_SpLim 21 #define REG_Hp 22 #define REG_Base 30 #endif /* mipse[lb] */ /* ----------------------------------------------------------------------------- The PowerPC register mapping 0 system glue? (caller-save, volatile) 1 SP (callee-save, non-volatile) 2 AIX, powerpc64-linux: RTOC (a strange special case) darwin: (caller-save, volatile) powerpc32-linux: reserved for use by system 3-10 args/return (caller-save, volatile) 11,12 system glue? (caller-save, volatile) 13 on 64-bit: reserved for thread state pointer on 32-bit: (callee-save, non-volatile) 14-31 (callee-save, non-volatile) f0 (caller-save, volatile) f1-f13 args/return (caller-save, volatile) f14-f31 (callee-save, non-volatile) \tr{14}--\tr{31} are wonderful callee-save registers on all ppc OSes. \tr{0}--\tr{12} are caller-save registers. \tr{%f14}--\tr{%f31} are callee-save floating-point registers. We can do the Whole Business with callee-save registers only! -------------------------------------------------------------------------- */ #if powerpc_REGS #define REG(x) __asm__(#x) #define REG_R1 r14 #define REG_R2 r15 #define REG_R3 r16 #define REG_R4 r17 #define REG_R5 r18 #define REG_R6 r19 #define REG_R7 r20 #define REG_R8 r21 #if darwin_REGS #define REG_F1 f14 #define REG_F2 f15 #define REG_F3 f16 #define REG_F4 f17 #define REG_D1 f18 #define REG_D2 f19 #else #define REG_F1 fr14 #define REG_F2 fr15 #define REG_F3 fr16 #define REG_F4 fr17 #define REG_D1 fr18 #define REG_D2 fr19 #endif #define REG_Sp r22 #define REG_SpLim r24 #define REG_Hp r25 #define REG_Base r27 #endif /* powerpc */ /* ----------------------------------------------------------------------------- The IA64 register mapping We place the general registers in the locals area of the register stack, so that the call mechanism takes care of saving them for us. We reserve the first 16 for gcc's use - since gcc uses the highest used register to determine the register stack frame size, this gives us a constant size register stack frame. \tr{f16-f32} are the callee-saved floating point registers. -------------------------------------------------------------------------- */ #if ia64_REGS #define REG(x) __asm__(#x) #define REG_R1 loc16 #define REG_R2 loc17 #define REG_R3 loc18 #define REG_R4 loc19 #define REG_R5 loc20 #define REG_R6 loc21 #define REG_R7 loc22 #define REG_R8 loc23 #define REG_F1 f16 #define REG_F2 f17 #define REG_F3 f18 #define REG_F4 f19 #define REG_D1 f20 #define REG_D2 f21 #define REG_Sp loc24 #define REG_SpLim loc26 #define REG_Hp loc27 #endif /* ia64 */ /* ----------------------------------------------------------------------------- The Sun SPARC register mapping !! IMPORTANT: if you change this register mapping you must also update compiler/nativeGen/SPARC/Regs.hs. That file handles the mapping for the NCG. This one only affects via-c code. The SPARC register (window) story: Remember, within the Haskell Threaded World, we essentially ``shut down'' the register-window mechanism---the window doesn't move at all while in this World. It *does* move, of course, if we call out to arbitrary~C... The %i, %l, and %o registers (8 each) are the input, local, and output registers visible in one register window. The 8 %g (global) registers are visible all the time. zero: always zero scratch: volatile across C-fn calls. used by linker. app: usable by application system: reserved for system alloc: allocated to in the register allocator, intra-closure only GHC usage v8 ABI v9 ABI Global %g0 zero zero zero %g1 alloc scratch scrach %g2 alloc app app %g3 alloc app app %g4 alloc app scratch %g5 system scratch %g6 system system %g7 system system Output: can be zapped by callee %o0-o5 alloc caller saves %o6 C stack ptr %o7 C ret addr Local: maintained by register windowing mechanism %l0 alloc %l1 R1 %l2 R2 %l3 R3 %l4 R4 %l5 R5 %l6 alloc %l7 alloc Input %i0 Sp %i1 Base %i2 SpLim %i3 Hp %i4 alloc %i5 R6 %i6 C frame ptr %i7 C ret addr The paired nature of the floating point registers causes complications for the native code generator. For convenience, we pretend that the first 22 fp regs %f0 .. %f21 are actually 11 double regs, and the remaining 10 are float (single) regs. The NCG acts accordingly. That means that the following FP assignment is rather fragile, and should only be changed with extreme care. The current scheme is: %f0 /%f1 FP return from C %f2 /%f3 D1 %f4 /%f5 D2 %f6 /%f7 ncg double spill tmp #1 %f8 /%f9 ncg double spill tmp #2 %f10/%f11 allocatable %f12/%f13 allocatable %f14/%f15 allocatable %f16/%f17 allocatable %f18/%f19 allocatable %f20/%f21 allocatable %f22 F1 %f23 F2 %f24 F3 %f25 F4 %f26 ncg single spill tmp #1 %f27 ncg single spill tmp #2 %f28 allocatable %f29 allocatable %f30 allocatable %f31 allocatable -------------------------------------------------------------------------- */ #if sparc_REGS #define REG(x) __asm__("%" #x) #define CALLER_SAVES_USER #define CALLER_SAVES_F1 #define CALLER_SAVES_F2 #define CALLER_SAVES_F3 #define CALLER_SAVES_F4 #define CALLER_SAVES_D1 #define CALLER_SAVES_D2 #define REG_R1 l1 #define REG_R2 l2 #define REG_R3 l3 #define REG_R4 l4 #define REG_R5 l5 #define REG_R6 i5 #define REG_F1 f22 #define REG_F2 f23 #define REG_F3 f24 #define REG_F4 f25 /* for each of the double arg regs, Dn_2 is the high half. */ #define REG_D1 f2 #define REG_D1_2 f3 #define REG_D2 f4 #define REG_D2_2 f5 #define REG_Sp i0 #define REG_SpLim i2 #define REG_Hp i3 #define REG_Base i1 /* #define NCG_SpillTmp_I1 g1 #define NCG_SpillTmp_I2 g2 #define NCG_SpillTmp_F1 f26 #define NCG_SpillTmp_F2 f27 #define NCG_SpillTmp_D1 f6 #define NCG_SpillTmp_D2 f8 */ #define NCG_FirstFloatReg f22 #endif /* sparc */ #endif /* NO_REGS */ /* ----------------------------------------------------------------------------- * These constants define how many stg registers will be used for * passing arguments (and results, in the case of an unboxed-tuple * return). * * We usually set MAX_REAL_VANILLA_REG and co. to be the number of the * highest STG register to occupy a real machine register, otherwise * the calling conventions will needlessly shuffle data between the * stack and memory-resident STG registers. We might occasionally * set these macros to other values for testing, though. * * Registers above these values might still be used, for instance to * communicate with PrimOps and RTS functions. */ #ifndef MAX_REAL_VANILLA_REG # if defined(REG_R8) # define MAX_REAL_VANILLA_REG 8 # elif defined(REG_R7) # define MAX_REAL_VANILLA_REG 7 # elif defined(REG_R6) # define MAX_REAL_VANILLA_REG 6 # elif defined(REG_R5) # define MAX_REAL_VANILLA_REG 5 # elif defined(REG_R4) # define MAX_REAL_VANILLA_REG 4 # elif defined(REG_R3) # define MAX_REAL_VANILLA_REG 3 # elif defined(REG_R2) # define MAX_REAL_VANILLA_REG 2 # elif defined(REG_R1) # define MAX_REAL_VANILLA_REG 1 # else # define MAX_REAL_VANILLA_REG 0 # endif #endif #ifndef MAX_REAL_FLOAT_REG # if defined(REG_F4) # define MAX_REAL_FLOAT_REG 4 # elif defined(REG_F3) # define MAX_REAL_FLOAT_REG 3 # elif defined(REG_F2) # define MAX_REAL_FLOAT_REG 2 # elif defined(REG_F1) # define MAX_REAL_FLOAT_REG 1 # else # define MAX_REAL_FLOAT_REG 0 # endif #endif #ifndef MAX_REAL_DOUBLE_REG # if defined(REG_D2) # define MAX_REAL_DOUBLE_REG 2 # elif defined(REG_D1) # define MAX_REAL_DOUBLE_REG 1 # else # define MAX_REAL_DOUBLE_REG 0 # endif #endif #ifndef MAX_REAL_LONG_REG # if defined(REG_L1) # define MAX_REAL_LONG_REG 1 # else # define MAX_REAL_LONG_REG 0 # endif #endif /* define NO_ARG_REGS if we have no argument registers at all (we can * optimise certain code paths using this predicate). */ #if MAX_REAL_VANILLA_REG < 2 #define NO_ARG_REGS #else #undef NO_ARG_REGS #endif #endif /* MACHREGS_H */