
Proceedings of DSL'99: The 2nd Conference on Domain-Specific Languages
Austin, Texas, USA, October 3–6, 1999

D O M A I N S P E C I F I C E M B E D D E D C O M P I L E R S

Daan Leijen and Erik Meijer

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Domain Speci�c Embedded Compilers

Daan Leijen and Erik Meijer

University of Utrecht

Department of Computer Science

POBox 80.089, 3508 TB Utrecht, The Netherlands

fdaan, erikg@cs.uu.nl, http://www.cs.uu.nl/~fdaan, erikg

Abstract

Domain-speci�c embedded languages (DSELs) ex-
pressed in higher-order, typed (HOT) languages pro-
vide a composable framework for domain-speci�c ab-
stractions. Such a framework is of greater util-
ity than a collection of stand-alone domain-speci�c
languages. Usually, embedded domain speci�c lan-
guages are build on top of a set of domain spe-
ci�c primitive functions that are ultimately imple-
mented using some form of foreign function call.
We sketch a general design pattern for embedding
client-server style services into Haskell using a do-
main speci�c embedded compiler for the server's
source language. In particular we apply this idea
to implement Haskell/DB, a domain speci�c em-
bdedded compiler that dynamically generates of SQL
queries from monad comprehensions, which are then
executed on an arbitrary ODBC database server.

1 Introduction

Databases are ubiquitous in computer science. For
instance, a web site is usually a fancy facade in
front of a conventional database, which makes the
information available in a convenient browsable
form. Sometimes, servers are even running directly
on a database engine that generates pages from
database records on-the-y. Hence is is not sur-
prising that database vendors provide hooks that
enable client applications to access and manipulate
their database servers. On Unix platforms this is
usually done via ODBC, under Windows there are
confusingly many possibilities such as ADO, OLE
DB, and ODBC.

What is common to all the above database bindings
is that queries are communicated to the database

as unstructured strings (usually) representing SQL
expressions. This low-level approach has many dis-
advantages:

� Programmers get no (static) safeguards against
creating syntactically incorrect or ill-typed
queries, which can lead to hard to �nd runtime
errors.

� Programmers have to distinguish between at
least two di�erent languages, SQL and the
scripting language that generates the queries
and submits them to the database engine
(Perl, Visual Basic). This makes programming
needlesly complex.

� Programmers are exposed to the accidental
complexity and idiosyncrasies of the particular
database binding, making code harder to write
and less robust against the vendor's fads [1].

We argue that domain-speci�c embedded languages
[9] (DSELs) expressed in higher-order, typed (HOT)
languages, Haskell [10] in our case, provide a com-
posable framework for domain-speci�c abstractions
that is of greater utility than a collection of stand-
alone domain-speci�c languages:

� Programmers have to learn only one language,
domain speci�c abstractions are exposed to the
host language as extension libraries.

� In many cases it is possible to present libraries
using a convenient domain speci�c syntax.

� It is nearly always1 possible to guarantee that
programmers can only produce syntactically
correct target programs, and in many cases we
are able to impose domain speci�c typing rules.

1For instance ? is a value of every type in Haskell, so can-

not prevent programmers from producing in�nite or partially

de�ned values.

� Programmers can seamlessly integrate with
other domain speci�c libraries (e.g. CGI, mail),
which are accessible in the same way as any
other library. This is a largely underestimated
bene�t of using the embedded approach. Con-
necting di�erent domain speci�c languages to-
gether is usually quite di�cult.

� Programmers can leverage on existing language
infrastructure such as the module and type sys-
tem and the built-in abstraction mechanisms.

Note that the ideas underlying our thesis date way
back to 1966 when Peter Landin [12] already ob-
served that all programming languages comprise a
domain independent linguistic framework and a do-
main dependent set of components. What is new in
this paper is that we show how to embed the terms
and the type system of another (domain speci�c)
programming language into the Haskell framework,
which dynamically compiles and executes programs
written in the embedded language. Moreover, no
changes to the syntax or additions of primitives were
needed to embed the language in Haskell.

1.1 Overview

We begin by giving a minuscule introduction to
Haskell and a crash course in relational databases,
and we show how a typical Visual Basic and a
typical Haskell program would access a relational
database. Next we sketch a general design pat-
tern for term- and type-safe embedding client-server
style services into Haskell using an evaluator for a
subset of SQL expressions as an example server. We
then turn our attention to the more challenging task
of embedding a database server in Haskell. Section 7
contrasts the Haskell and Visual Basic implementa-
tions of a example web-page that generates HTML
from a database of exam marks. We �nish with
some conclusions and some ideas for future work.

2 Minuscule introduction to Haskell

The main virtue of a functional language is that
functions are �rst-class citizens that can be stored
in lists, or passed as arguments to and returned
from other functions. To emphasize the fact that
functions of type a -> b have the same status as

any other kind of value, we usually write them
as lambda-expressions f = \a -> b instead of the
more common Haskellish notation f a = b.

Function application is given by juxtaposition in
Haskell and associates to the left. Thus when we
have the three argument function line:

line = \a -> \b -> \x -> a*x + b

the application line 2 3 denotes the single argu-
ment function \x -> 2*x + 3. The type of the
line function can be speci�ed explicitly:

line :: Int -> Int -> Int -> Int

The type shows that line takes three Int argu-
ments and returns an Int.

Case expressions are used to de�ne functions by case
distinction, for instance the factorial function can be
de�ned in Haskell as

fac :: Num a => a -> a

fac = \n ->

case n of

{ 0 -> 1

; n -> n * fac (n-1)

}

In Haskell, polymorphic types can be constrained
by means of type contexts. The given type for the
factorial function fac :: Num a => a -> a -> a

says that function fac has type a -> a -> a for all
types a that are instances of the Num class. Unsur-
prisingly it is the case that Num Int, Num Float and
Num Double are all true.

We will represent database rows by extensible
records, an experimental feature that is cur-
rently only supported by the the TREX ex-
tension of the Hugs implementation of Haskell
[8]. A record is nothing more than an asso-
ciation list of �eld-value pairs. For instance
the record (x = 3, even = False) :: Rec (x
:: Int, even :: Bool) has two �elds, x of type
Int and even of type Bool. A record of type Rec r
can be extended by a �eld z provided that z does not
already occur in r. The fact that record r should
lack �eld z is indicated by the constraint r\z, thus
the type of a function that adds an foo �eld to a
record becomes:

extendWithFoo :: r\foo =>

a -> Rec r -> Rec (foo :: a | r)

extendWithFoo = \a -> \r -> (foo = a | r)

Unfortunately, labels are not (yet) �rst class values
in TREX, so we cannot write a generic function that
extends a given record with a new �eld:

-- WRONG

extendWith = \(f,a) -> \r -> (f = a | r)

In our case the lack of �rst class labels means that
we have to repeat a lot of code that only di�ers in
the names of some labels. Another de�ciency of the
current implementation of TREX records is the fact
that it is impossible to formulate a constraint on all
the values in a given record, for instance, we would
like to constrain a record to contain only values on
which equality is de�ned. Currently, there is just
one built-in constraint ShowRecRow r that indicates
that all values in row r are in the Show class.

When interacting with the outside world or access-
ing object models, we have to deal with side-e�ects.
In Haskell, e�ectful computations live in the IO
monad [15]. A value of type IO a is a latently ef-
fectful computation that, when executed, will pro-
duce a value of type a. For instance, the command
getChar :: IO Char will read a character from the
standard input when it is executed.

Like functions, latently e�ectful computations are
�rst class citizens that can be passed as arguments,
stored in list, and returned as results. For exam-
ple putChar :: Char -> IO () is a function that
takes a character and then returns a computation
that, when executed, will print that character on
the standard output.

E�ectful computations can be composed
using the do{}-notation. The command
do{ a <- ma; f a } :: IO b is a latent com-
putation, that, when executed, �rst executes the
command ma :: IO a to obtain a value a :: a,
passes that to the action-producing function
f :: a -> IO b and then executes (f a) to
obtain a value of type IO b. For example, when
executed, the command:

do{ c <- getChar

; putChar c

}

reads a character from the standard input and
copies it to the standard output.

The usefulness of monads goes far beyond in-
put/output, many other type constructors are mon-
ads as well. In section 6 we will de�ne the Query

monad that allows us to write queries using the
same do{} notation that we introduced here for IO-
computations.

In this paper we adopt style conventions that em-
phasize when we are dealing with e�ectful com-
putations. Speci�cally, all expressions of monadic
type (such as IO and Query) are written with
an explicit do{}. To reect the inuence of the
OO style, we will use post�x function application
object#method = method object to mimic the
object.method notation. Together with the con-
vention for writing functions as lambda-expressions,
this results in highly stylized programs from which
it is easy to tell the type of an expression by looking
at its syntactic shape.

3 A crash course in relational

databases

In a relational database [5], data is represented
as sets of tuples. For example take the following
database Rogerson of objects and some of their
properties [17]:

Object Edible Inheritance President
Rich people False False True
Bean plants True False False
CORBA False True False
COM False False False

We can conclude from this table that bean plants are
edible, and that rich people can run for president.
We can query the database more systematically us-
ing relational algebra.

The selection operator � speci�es a subset of rows
whose attributes satisfy some property. For example
we can eliminate all entries for objects that can run
for president from the database using the expression
�President=False Rogerson:

Object Edible Inheritance President
Bean plants True False False
CORBA False True False
COM False False False

The projection operator � speci�es a subset of the
columns of the database. For example, we can
return all objects that are edible using the query
�Object (�Edible=True Rogerson)

Object
Bean plants

Another typical operation on relations is join ./ that
combines two relations by merging tuples whose
common attributes have identical values. Hence, if
we join the Presidents table

Name President
Starr False
Clinton True

with the Rogerson table using
�Name;Object(Presidents ./ Rogerson) we get
a table with the name and object description of
people that can run for president:

Name Object
Clinton Rich people

3.1 The SQL way: SELECT statement

SQL is the defacto standard programming language
to formulate queries over relational databases. The
SQL query

SELECT columns

FROM tables

WHERE criteria

combines selections, projections and joins in one
powerful primitive. The SELECT clause speci�es the
columns to project, the FROM clause speci�es the ta-
bles where the columns are located and the WHERE

clause speci�es which rows in the tables should be
selected.

The query �President=False Rogerson is expressed
in SQL as:

SELECT *

FROM Rogerson AS r

WHERE r.President = FALSE

The query �Object (�Edible=True Rogerson) be-
comes:

SELECT r.Object

FROM Rogerson AS r

WHERE r.Edible = TRUE

The query �Name;Object(Presidents ./ Rogerson)
is expressed as:

SELECT p.name, r.Object

FROM Rogerson AS r, Presidents AS p

WHERE r.President = p.President

3.2 The VB way: Unstructured strings

The common way to do query processing from Vi-
sual Basic is to build an unstructured string rep-
resenting the SQL query and submitting that to a
database server object (we will discuss the ADO ob-
ject model in more detail in section 6.1). So for
instance, The query �President=False Rogerson is
expressed in Visual Basic as:

Q = "SELECT *"

Q = Q & "FROM Rogerson AS r"

Q = Q & "WHERE r.President = FALSE"

Set RS = CreateObject("ADODB.Recordset")

RS.Open Q "Rogerson"

Do While Not RS.EOF

Print RS("Object")

Print RS("Edible")

Print RS("Inheritance")

Print RS("President")

RS.MoveNext

Loop

3.3 The FP way: Comprehensions

Within the functional programming community,
people have argued that (list) comprehensions are
a good query notation for database programming
languages [2]. For example using the comprehen-
sion notation supported by Haskell/DB, the query
�President=False Rogerson can be expressed as:

do{ r <- table rogerson

; restrict

(r!president .==. constant False)

; return r

}

The query �Object (�Edible=True Rogerson) becomes

do{ r <- table rogerson

; restrict (r!edible .==. constant True)

; project (object = r!object)

}

Queries that use projections and joins such as the
following �Name;Object(Presidents ./ Rogerson)
are harder to formulate because we have to indi-
cate explicitly on which common �elds to compare
and how to create the resulting tuple:

do{ r <- table rogerson

; p <- table president

; restrict (r!president .==. p!president)

; project (name = p!name,object = r!object)

}

The comprehensions are fully typed and automati-
cally translated into correct SQL strings which are
send to a low-level database server. This paper de-
scribes not only how we did this for SQL but also
tries to give a general recipe for embedding lan-
guages into a strongly typed language.

Let's put the question of embedding SQL aside until
section 6 and �rst look how we in general can embed
languages into Haskell.

4 Term embedding

Although SQL is embedded in this speci�c case,
there is a general strategy for embedding services
in a HOT language. We will illustrate this using
a simple SQL expression service as an example. In
SQL, expressions are used (amongst others) in the
search conditions of WHERE clauses to perform com-
putations and comparisons on columns and values.

4.1 SQL expression server

Lets assume that the SQL expression server pro-
vides us with the following interface for evaluating
expressions (described in IDL):

interface IServer

{ void SetRequest([in,string] char* expr);

; void GetResponse([out] char* result);

}

Although simple, the IServer interface captures the
essence of many dynamic services such as a desk
calculator, �nger, HTTP, ftp, NNTP, DNS, ODBC,
ADO and similar information servers.

From Haskell, we can access the IServer interface
using the functions setRequest, and getResponse
that are automatically generated by our H/Direct
IDL compiler [6]:

setRequest :: String -> IServer s -> IO ()

getResponse :: IServer s -> IO String

We are now able to write an evaluator function that
takes an expression, sends it to the server and re-
turns the result:

runExpr :: String -> IO Int

runExpr = \expr ->

do{ server <- createObject "Expr.Server"

; server # setRequest expr

; result <- server # getResponse

; return (read result)

}

This is essentially the kind of interface that is in
use now with SQL server protocols as ODBC or
ADO. An unstructured SQL string is directly sent
to the server. The problem is that there is noth-
ing that prevents the programmer from sending in-
valid strings to the server, leading to errors at run-
time and/or unpredictable behavior of the server.
Clearly, this is unacceptable in critical business ap-
plications.

4.2 Abstract syntax

To prevent the construction of syntactically incor-
rect expressions, we de�ne an abstract syntax for the
terms of the input language of the speci�c server we
are targeting, together with a \code generator" to
map abstract syntax trees into the concrete syntax
of the input language.

The abstract syntax PrimExpr simply de�nes literal
constants, and unary and binary operators. (In sec-
tion 6 we will add row selection):

data PrimExpr

= BinExpr BinOp PrimExpr PrimExpr

| UnExpr UnOp PrimExpr

| ConstExpr String

data BinOp

= OpEq | OpAnd | OpPlus | ...

Types UnOp and BinOp are just enumerations of the
unary and binary operators of SQL expressions.

Writing expressions directly in abstract syntax is
not very convenient, so we provide combinators to
make the programmer's life more comfortable. Each
SQL operator is represented in Haskell by the same
operator surrounded with dots. Some de�nitions
are2:

constant :: Show a => a -> PrimExpr

(.+.) :: PrimExpr -> PrimExpr -> PrimExpr

(.==.) :: PrimExpr -> PrimExpr -> PrimExpr

(.AND.) :: PrimExpr -> PrimExpr -> PrimExpr

Now we can write constant 3 .==. constant

5 instead of the cumbersome BinExpr OpEq

(ConstExpr (show 3)) (ConstExpr (show 5)).
This is what embedded domain speci�c languages
are all about!

4.3 Concrete syntax

In order to evaluate expressions, we must map them
into the exact concrete syntax that is required by
the server component.

The code generator for our expression server is
straightforward; we print expressions into their fully
parenthesized concrete representation by a simple
inductive function:

pPrimExpr :: PrimExpr -> String

pPrimExpr = \e ->

case e of

{ ConstExpr s

-> s

; UnExpr op x

-> pUnOp op++parens x

; BinExpr op x y

2The constant function is unsafe since any value in the

Show class can be used. In the real library we introduce a

separate class ShowConstant which is only de�ned on basic

types.

-> parens x++pBinOp op++parens y

}

parens = \x -> "(" ++ pPrimExpr x ++ ")"

Normally however, this step will be more involved
as we will see in the SQL example.

4.4 Embedding expressions

Now that we know how to construct expressions and
how to generate code from them, we can rewrite the
evaluator function to use the structured expressions:

runExpr :: PrimExpr -> IO Int

runExpr = \expr ->

do{ server <- CreateObject "Expr.Server"

; server # setRequest (pPrimExpr expr)

; result <- server # getResponse

; return (read result)

}

We can now use SQL expressions in Haskell as if
they were built-in. Function runExpr will dynami-
cally compile a PrimExpr program into target code,
execute that on the expression server and coerce the
result back into a Haskell integer value:

sum :: Int -> PrimExpr

sum = \n ->

if (n <= 0)

then (constant 0)

else (constant n .+. sum (n-1))

test = do{ runExpr (sum 10) }

5 Type embedding

The above embedding is already superior to con-
structing unstructured string to pass to the server
because it is impossible to construct syntactically
incorrect requests. However, it is still possible to
construct ill typed request, as the following example
shows:

do{ let wrong = (constant 3) .AND. (constant 5)

; result <- runExpr wrong

; print result

}

Since the PrimExpr data type is completely un-
typed, we have no way to prevent the construction
of terms such as wrong that might crash the server
because the operands of the AND expression are not
of boolean type.

5.1 Phantom types

We used abstract syntax trees to ensure that we can
only generate syntactically correct request, but the
billion dollar question of course is whether there is
a similar trick to ensure that we can only generate
type correct requests. Fortunately, the answer is
yes! It is possible indeed to add an extra layer on top
of PrimExpr that e�ectively serves as a type system
for the input language of the expression server.

The trick is to introduce a new polymorphic type
Expr a such that expr :: Expr a means that
expr is an expression of type a. The type variable a
in the de�nition of the Expr data type is only used
to hold a type; it does not occur in the right hand
side of its de�nition and is therefore never physically
present:

data Expr a = Expr PrimExpr

Now we re�ne the types of the functions to construct
values of type Expr a to encode the typing rules for
expressions:

constant :: Show a => a -> Expr a

(.+.) :: Expr Int -> Expr Int -> Expr Int

(.==.) :: Eq a=> Expr a-> Expr a-> Expr Bool

(.AND.):: Expr Bool -> Expr Bool-> Expr Bool

For example, the de�nition of (.==.) is now:

(.==.) :: Eq a=> Expr a-> Expr a-> Expr Bool

(Expr x) .==. (Expr y)

= Expr (BinExpr OpEq x y)

By making the Expr type an abstract data type, we
ensure that only the primitive functions can use the
unsafe PrimExpr type. If we now use these com-
binators to write (constant 3) .AND. (constant

5), the Haskell type-checker will complain that the
type Expr Int of the operand (constant 2) does
not match the required type Expr Bool.

The typing of expressions via phantom type vari-
ables extends immediately to values built using
Haskell primitives. Our example function sum for
instance, now has type sum :: Int -> Expr Int.

Phantom type variables have many other exciting
uses, for instance in encoding inheritance and typing
pointers [7]. Later we will show how we use multiple
phantom type variables to give a type safe encoding
of attribute selection in records.

6 Embedding SQL

Armed with the knowledge of how to safely embed
a simple language into Haskell, we return to our
original task of embedding SQL into Haskell.

6.1 The SQL server

We will use ActiveX Data Objects (ADO) as our
SQL server component. ADO is a COM [11] frame-
work that can use any ODBC compliant database;
MS SQL Server, Oracle, DB/2, MS Access and
many others. The ADO object model is very rich
but we will use only a tiny fraction of its function-
ality.

ADO represents a relation as a RecordSet object.
It creates a set of records from a query via its Open
method:

dispinterface Recordset {

void Open

([in,optional] VARIANT Source,

,[in,optional] VARIANT ActiveConnection,

,[in,optional] CursorTypeEnum CursorType,

,[in,optional] LockTypeEnum LockType,

,[in,optional] long Options

);

Bool EOF();

void MoveNext();

Fields* GetFields();

}

The �rst argument of the Open method is the source
of the recordset, which can be an SQL string or the
name of a table or a stored procedure. The second
argument of the Open method can be a connection
string, in which case a new connection is made to

create the recordset, or it can be a Connection ob-
ject that we have created earlier. In this paper, we
will not use the other (optional) arguments of the
Open method, hence we provide the following signa-
ture for open:

open :: (VARIANT src, VARIANT actConn) =>

src -> actConnn -> IRecordSet r -> IO ()

The MoveNext, EOF and GetFields methods allow
us to navigate through the recordset. Their Haskell
signatures are:

moveNext :: IRecordSet r -> IO ()

eof :: IRecordSet r -> IO Bool

getFields :: IRecordSet r -> IO (IFields ())

The Fields interface gives access to all the �elds of
a row, they can be accessed either by position or by
name:

dispinterface Fields {

long GetCount();

Field* GetItem([in] VARIANT Index);

};

Each Field object corresponds to a column in the
Recordset:

dispinterface Field {

VARIANT GetValue();

BSTR GetName();

}

The GetValue property of a Field object can be
used to obtain the value of a column in the current
row. The GetName property returns the name of the
�eld:

getValue :: VARIANT a => IField f -> IO a

getName :: IField f -> IO String

Although the ADO object model is somewhat more
re�ned than the expression evaluator example we
have seen earlier, it does still �ts the basic client-
server framework. Requests are submitted via the
Openmethod, and responses are inspected by iterat-
ing over the individual Field objects of the Fields
collection.

6.2 Using the RecordSet in Haskell

In Haskell, we would like to abstract from iterat-
ing through the record set and access the result of
performing a query as a list of �elds. This faces us
with the choice of either returning this list eagerly,
or creating it lazily. In the former case, all �elds are
read into a list at once. In the latter case, the �elds
are encapsulated in a lazy stream where a �eld is
read by demand.

Both functions are de�ned in terms of the function
readFields that takes an IO-action transformer
function as an additional argument:

readFields :: (IO a -> IO a)

-> IRecordSet r -> IO [IFields ()]

readFields = \perform -> \records -> perform $

do{ atEOF <- records # eof

; if atEOF

then do{ return [] }

else do{ field <- records# etFields

; records#moveNext

; rest <- rs#readFields perform

; return ([field] ++ rest)

}

}

By taking perform to be the identity, we get a
function that reads the list of �elds strictly, by
taking perform to be the IO-delaying function
unsafeInterleaveIO we obtain a function that
reads the list of �elds lazily.

A simple query evaluator can now be written as:

runQuery :: String -> IO [IFields ()]

runQuery = \query ->

do{ records <- createObject "ADO.RecordSet"

; records # open query Nothing

; fields <- records # readFields id

; return fields

}

Of course, this approach su�ers from all the weak-
nesses described in section 4.

6.3 Abstract syntax

Just as in the previous example we will de�ne and
abstract syntax for expressing database operations.

Our language for expressing those operations will be
the relational algebra. The code generator will take
these expressions and translate them to the concrete
syntax of SQL statements which preserve the se-
mantics of the original expression.

The abstract syntax for the relation algebra be-
comes3:

type TableName = String

type Attribute = String

type Scheme = [Attribute]

type Assoc = [(Attribute,PrimExpr)]

data PrimQuery

= BaseTable TableName Scheme

| Project Assoc PrimQuery

| Restrict PrimExpr PrimQuery

| Binary RelOp PrimQuery PrimQuery

| Empty

data RelOp

= Times | Union | Intersect

| Divide | Difference

data PrimExpr

= AttrExpr Attribute

| ConstExpr String

| BinExpr BinOp PrimExpr PrimExpr

| UnExpr UnOp PrimExpr

For example, the relational expression
that returns all objects that are edible:
�Object (�Edible=True Rogerson) can be expressed
in our abstract syntax as:

Project [("Object",AttrExpr "Object")]

(Restrict (BinExpr OpEq (AttrExpr "Edible")

(ConstExpr "True"))

(BaseTable "Rogerson"

["Object", "Edible"

, "Inheritance", "President"

]

))

6.4 Concrete syntax

It is straightforward to generate concrete SQL state-
ments from the PrimQuery data type, allthough spe-
cial care has to be taken to preserve the correct se-
mantics of the relational algebra due to the idiosyn-
crasies of SQL. The use of the relational algebra as

3The Project constructor actually does both projection

and renaming.

an intermediate language allows us to target a wide
range of di�erent database languages. We are plan-
ning to add bindings to other dialects of SQL and
languages as ASN.1.

Besides being portable, the simple semantics of the
relational algebra allows us to perform a powerful
set of optimizations quite easily before transform-
ing the expression to concrete syntax. Many times
the SQL server is not capable of doing these trans-
formations due to the complex semantics of SQL.
Another bene�t is that we can add operations like
table comparisons which are very hard to express
in languages like SQL, but easy to generate from a
relational expression.

6.5 Towards comprehensions

We could proceed as in our earlier example and de-
�ne some friendly combinators for specifying rela-
tional expressions as we did in our previous example.
However there is a serious drawback to using rela-
tional expressions directly as our programming lan-
guage. In the relational algebra, attributes are only
speci�ed by their name. There is no separate bind-
ing mechanism to distinguish attributes from di�er-
ent tables. Suppose we take the cartesian product
of a relation with itself. In SQL we could write:

SELECT X.Name, X.Mark

FROM Students As X, Students As Y

WHERE X.Mark = Y.Mark

AND X.Name <> Y.Name

But in the relational algebra, we are unable to do
this since there are common common attributes like
Name and City which lead to ambiguity. To take
the cartesian product, one relation needs to rename
those attributes. The join (./) operator is espe-
cially introduced to make it easier to specify the
most common products where renaming would be
necessary. Besides only covering the most common
cases, it is notoriously hard to typecheck join ex-
pressions [3] and we haven't found a way to embed
those typing rules within Haskell.

However, why not use the same approach as SQL?
We will introduce a binding mechanism (monad
comprehensions) for qualifying relations. Instead of
identifying attributes just by name, we will use both
a name and relation. The above query is formulated
in Haskell/DB as:

do{ x <- table students

; y <- table students

; restrict (x!mark .==. y!mark)

; restrict (x!name .<>. y!name)

; project (name = x!name, grade = x!grade)

}

Under the hood, we still generate relational algebra
expressions but all the renaming is done automat-
ically within the combinators. Besides automatic
renaming, we would like the Haskell type-checker
to prevent us from writing silly queries such as this
one where we ask to project the non-existing city
attribute of a student:

do{ x <- table students

; project (name = x!name, city = x!city)

}

We will present two designs for implementing com-
prehensions that are increasingly more type safe,
but at the same time increasingly complex.

6.6 Attempt 1: Untyped comprehen-
sions

The �rst attempt only hides the automatic renam-
ing of attribute names, making this solution already
much safer and convenient than writing abstract
syntax directly. In our next attempt we will use
phantom types to make queries more type safe. We
de�ned the Query monad to express our queries.
The use of a monad gives us the following advan-
tages:

� The do notation provides a nice syntax to write
queries (comprehensions).

� Monads enable a custom binding mechanism (ie
do{x <- table X; ...}). to qualify names.
An alternative approach of explicitly renaming
attributes would be too cumbersome to use in
practice.

� An invisible state can be maintained. The
state of the Query monad contains the (par-
tially) completed relational expression and a
fresh name supply for automatic renaming of
attributes.

Our query language now consists of three basic com-
binators, restrict, project and table, and the

two monad operations4 returnQ and bindQ for the
Query monad. Besides that we have the usual bi-
nary combinators like union:

type State = (PrimQuery,FreshNames)

data Query a = Query (State -> (a,State))

returnQ :: a -> Query a

bindQ :: Query a -> (a -> Query b) -> Query b

restrict :: Expr Bool -> Query ()

project :: Rec r -> Query Rel

table :: Table -> Query Rel

union :: Query Rel -> Query Rel -> Query Rel

The exact details of doing correct renaming for all
attributes are rather subtle and a thorough discus-
sion is outside the scope of this paper. We will pro-
vide all the details in a separate report [13]. The
Rec r and Rel types are explained in the next sec-
tion where we add typed layer on top of the com-
prehension language.

6.7 Attempt 2: Typed comprehensions

We already know how to make the expression sub-
language type safe using phantom types. For the
comprehension language we will use the same trick.
Central to this discussion is the attribute selection
operator:

(!) :: Rel -> Attribute -> PrimExpr

Given a relation and an attribute name, the oper-
ator returns the attribute value expression. Given
that any attribute always has a well de�ned type,
we parametrize the attribute by its type to return
an expression of the same type:

data Attr a = Attr Attribute

(!) :: Rel -> Attr a -> Expr a

Although we can now only use an attribute expres-
sion at its right type, the system doesn't prevent us
from selecting non-existent attributes from the re-
lation. The solution is to parametrize the Rel type
by the its \scheme". Similarly, we parametrize the
Attr type again by both the scheme of the relation
and the type of the attribute:

4These functions allow us to use the do syntax.

data Rel r = Rel Scheme

data Table r = Table TableName Scheme

data Attr r a = Attr Attribute

The Rel and Table both retain their associated
scheme. This is needed to read the concrete values
returned by the actual query.

The selection operator (!) now expresses in its type
that given a relation with scheme r that has an at-
tribute of type a, it returns an expression of type a.
The polymorphic types of the other basic combina-
tors should not be too surprising:

(!) :: Rel r -> Attr r a -> Expr a

restrict :: Expr Bool -> Query ()

project :: Rec r -> Query (Rel r)

table :: Table r -> Query (Rel r)

Our desire to guarantee type safety bears some
additional cost on the user. For every attribute
attr that occurs in a query, we have to de�ne an
attribute de�nition attr :: r\attr => Attr (attr
:: a | r) a by hand, until TREX will provide �rst
class labels. Similarly, for every base table with
scheme r that we use, we need a de�nition of type
Table r. For the example database of section 7 we
have:

students :: Table(name :: String, mark :: Char)

name :: r\name =>

Attr (name :: String | r) String

mark :: r\mark =>

Attr (mark :: Char | r) Char

We have written a tool called DB/Direct that
queries the system tables and automatically gener-
ates a suitable database de�nition. This tool is of
course written using Haskell/DB.

The Haskell type-checker now checks the consis-
tency of our queries. It accepts query passed
without problems, but it fails to type check query
failed because the condition student!mark .<=.
constant 5 wrongly attempts to compare a char-
acter to an integer and because the programmer ac-
cidentally used the attribute ame instead of name:

passed :: Query (Rel (name :: String))

passed =

do{ student <- table students

; restrict (student!mark .>=. constant 'B')

; project (name = student!name)

}

failed :: Query (Rel (name :: String))

failed =

do{ student <- table student

; restrict (student!mark .<=. constant 5)

; project (name = student!ame)

}

7 Exam marks

Any commercial exploitation of the web today uses
server-side scripts that connect to a database and
deliver an HTML page composed from dynamic
data obtained from querying the database using in-
formation in the client's request. The following ex-
ample is a is a simple server-side web script that
generates an HTML page for a database of exam
marks and student names.

The database is accessed via simple web page with
a text entry and a submit button:

The underlying HTML has a form element that sub-
mits the query to the getMark script on the server.

<HTML>

<HEAD> <TITLE>Find my mark</TITLE> </HEAD>

<BODY>

<FORM ACTION="getMark.asp" METHOD="post">

My name is:

<INPUT TYPE=text NAME="name">

<INPUT TYPE="submit" VALUE="Show my mark">

</FORM>

</BODY>

</HTML>

7.1 Visual Basic

Even the simplest Visual Basic solution uses no less
than four di�erent languages. Visual Basic for the
business logic and glue, SQL for the query, and
HTML with ASP directives to generate the result
page.

1. In ASP pages, scripts are separated from the
rest of the document by <% and %> tags. The
prelude script declares all variables, construct
the query and retrieves the results from the
students database. The ASP Request ob-
ject contains the information passed by the
client to the server. The Form collection con-
tains all the form-variables passed using a POST
query. Hence Request.Form("name") returns
the value that the user typed into the name
text�eld of the above HTML page.

<%

Q = "SELECT student.name, student.mark"

Q = Q & " FROM Students AS student"

Q = Q & " WHERE "student.name = "

Q = Q & Request.Form("name")

Set RS = CreateObject("ADO.Recordset")

RS.Open Q "CS101"

%>

2. The body contains the actual HTML that is
returned to the client, with a table containing
the student's name and mark. The <%= and %>
tags enclose Visual Basic expressions that are
included in the output text. Thus the snippet:

<TR>

<TD><%=RS("name")%></TD>

<TD><%=RS("mark")%></TD>

</TR>

creates a table row that contains the name and
the mark of the student who made the request:

<HTML>

<HEAD> <TITLE>Marks</TITLE> </HEAD>

<BODY>

<TABLE BORDER="1">

<TR>

<TH>Name</TH>

<TH>Mark</TH>

<TR>

<%Do While Not RS.EOF%>

<TR>

<TD><%=RS("name")%></TD>

<TD><%=RS("mark")%></TD>

<TR>

<%RS.MoveNext%>

<%Loop%>

</TABLE>

</BODY>

</HTML>

3. The clean-up phase disconnects the databases
and releases the recordset:

<%

RS.Close

set RS = Nothing

%>

7.2 Haskell

The Haskell version of our example web page is more
coherent than the Visual Basic version. Instead of
four di�erent languages, we need only need Haskell
embedded in a minimal ASP page [14]:

<%@ LANGUAGE=HaskellScript %>

<%

module Main where

import Asp

import HtmlWizard

main :: IO ()

main = wrapper $ \request ->

do{ name <- request # lookup "name"

; r <- runQuery (queryMark name) "CS101"

; return (markPage r)

}

The function queryMark is the analog of code in the
prelude part of the Visual Basic page, except here
it is de�ned as a separate function parametrized on
the name of the student:

type Student = Row(name :: String, mark :: Char)

queryMark :: String -> Query Student

queryMark = \n ->

do{ student <- table students

; restrict (student!name .==. lift n)

; project

(name = student!name

, mark = student!mark

)

}

Function markPage makes a nice HTML page from
the result of performing the query:

markPage :: [Student]

markPage = \rs ->

page "Marks"

[table

(headers = ["Name", "Mark"]

, rows = [[r!name, r!mark:""]

| r <- rs

]

)

]

%>

The Haskell program is more concise and more
modular than the Visual Basic version. Functions
queryMark and markPage can be tested separately,
and perhaps even more importantly, we can easily
reuse the complete program to run in a traditional
CGI-based environment, by importing the CGImod-
ule instead of Asp (in a language such as Standard
ML we would have parametrized over the server in-
terface).

8 Status and conclusions

The main lesson of this paper is a new design princi-
ple for embedding domain speci�c languages where
embedded programs are compiled on-the-y and ex-
ecuted by submitting the target code to a server
component for execution. We have shown how to
embed SQL into Haskell using this principle, but
there are numerous other possible application do-
mains where embedded compilers are the implemen-
tation technology of choice; many Unix services are
accessible using a completely text-based protocol
over sockets.

Traditionally, domain abstractions are available
as external libraries. For instance, the JMAIL
component (available at the time of writing at
http://www.dimac.net/) provides a plethora of
methods to compose email messages, to show just a
few:

dispinterface ISMTPMail {

VARIANT_BOOL Execute();

void AddRecipient([in] BSTR Email);

[propget] BSTR Sender();

[propput] void Sender([in] BSTR rhs);

[propget] BSTR Subject();

[propput] void Subject([in] BSTR rhs);

[propget] BSTR Body();

[propput] void Body([in] BSTR rhs);

};

Instead of providing a whole bunch of methods to
construct an email message in an imperative style,
an alternative approach would be to have a raw
(SMTP) mail server [16] component that accepts

email messages in the RFC822 format [4] directly
together with a set of combinators to build email
messages in a compositional style. Ultimately, these
abstract email messages are \compiled" into raw
strings that are submitted to the mail server, per-
haps by piping into the appropriate telnet port.

Our ultimate goal for a Domain Speci�c Embedded
Compiler is to provide hard compile-time guaran-
tees for type safety and syntactical correctness of
the generated target program. Syntactical correct-
ness of target programs can be garantueed by hiding
the construction of programs behind abstract data
types. Phantom types, polymorphic types whose
type parameter is only used at compile-time but
whose values never carry any value of the param-
eter type, are a very elegant mechanism to impose
the Haskell type system on the embedded language.

Our �nal example shows how Domain Speci�c Em-
bedded Compilers can make server-side web script-
ing more productive. Because we can leverage on
the abstraction mechanisms of Haskell (higher-order
functions, module system), compared to the VB so-
lution, the Haskell program is of higher quality, and
easier to change and maintain. The formulation
of queries using the do{} notation and extensible
records is rather neat, but the exact translation into
SQL turned out to be rather subtle.

Both the Haskell/DB and the DB/Direct pack-
ages are available on the web at the URL
http://www.haskell.org/haskellDB.

Acknowledgements

Thanks to Hans Philippi for brushing up our knowl-
edge on databases, and to the DSL99 referees, Ar-
jan van Yzendoorn and Jim Hook for their con-
structive remarks that helped to improve the pre-
sentation of our paper. Joe Armstrong's talk on
services as components at the Dagstuhl workshop
on \Component Based Development Under Di�er-
ent Paradigms" provided much of the initial inspi-
ration for this work.

References

[1] William J. Brown, Raphael C. Malveau, Hays
W. \Skip" McCormick II, and Thomas J. Mow-
bray. AntiPatterns: Refactoring Software, Ar-
chitectures, and Projects in Crisis. Wiley Com-
puter Publishing, 1998.

[2] Peter Buneman, Leonid Libkin, Dan Suciu, Val
Tannen, and Limsoon Wong. Comprehension
Syntax. ACM SIGMOD Record, 23(1):87{96,
March 1994.

[3] Peter Buneman and Atsushi Ohori. Polymor-
phism and type inference in database program-
ming. ACM Transactions on Database Sys-
tems, 21(1):30{76, March 1996

[4] David H. Crocker. Standard for the
Format of Arpa Internet Text Mes-
sages. Technical Report RFC 822, 1982.
http://www.imc.org/rfc822.

[5] C.J. Date. An Introduction to Database Sys-
tems (6th edition). Addison-Wesley, 1995.

[6] S.O. Finne, D. Leijen, E. Meijer, and S.L. Pey-
ton Jones. H/Direct: A Binary Foreign Lan-
guage Interface for Haskell. In ICFP'98, 1998.

[7] S.O. Finne, D. Leijen, E. Meijer, and S.L. Pey-
ton Jones. Calling hell from heaven and heaven
from hell. In ICFP'99, 1999.

[8] B.R. Gaster and M.P. Jones. A Polymorphic
Type System fo Extensible Records and Vari-
ants. Technical Report NOTTCS-TR-96-3, De-
partment of Computer Science, University of
Nottingham, 1996.

[9] Paul Hudak. Modular Domain Speci�c Lan-
guages and Tools. In ICSR5, 1998.

[10] Simon Peyton Jones and John Hughes (eds).
Report on the Language Haskell'98. Available
online: htpp://www.haskell.org/report, Febru-
ary 1999.

[11] S.L. Peyton Jones, E. Meijer, and D. Leijen.
Scripting COM Components in Haskell. In
ICSR5, 1998.

[12] P. J. Landin. The next 700 programming lan-
guages. CACM, 9(3):157{164, March 1966.

[13] D. Leijen and E. Meijer. Translating do-
notation to SQL. 1999.

[14] Erik Meijer. Server Side Scripting in Haskell.
Journal of Functional Programming, accepted
for publication.

[15] S. L. Peyton Jones and Philip Wadler. Imper-
ative functional programming. In 20'th ACM
Symposium on Principles of Programming Lan-
guages, Charlotte, North Carolina, January
1993.

[16] Jonathan B. Postel. Simple Mail Transfer
Protocol. Technical Report RFC 821, 1982.
http://www.imc.org/rfc821.

[17] Dale Rogerson. Inside COM. Microsoft Press,
1997.

