
Student Paper: HaskellDB Improved

Björn Bringert
Dept. of Computing Science

Chalmers University of
Technology

d00bring@dtek.chalmers.se

Anders Höckersten
Dept. of Computing Science

Chalmers University of
Technology

chucky@dtek.chalmers.se

Abstract

We present an improved version of the HaskellDB database library.
The original version relied on TRex, a Haskell extension supported
only by the Hugs interpreter. We have replaced the use of TRex by
a record implementation which uses more commonly implemented
Haskell extensions.

Additionally, HaskellDB now supports two different cross-platform
database backends. Other changes include database creation func-
tionality, bounded string support, performance enhancements, fixes
to the optimisation logic, transaction support and more fine grained
expression types.

Categories and Subject Descriptors

H.2.3 [Database Management]: Languages—Query languages;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Data types and structures; D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms

Design,Languages

Keywords

Databases, Haskell, Extensible records, SQL

1 Introduction

HaskellDB [10, 8] is a combinator library for expressing queries
and other operations on relational databases in atype safeand
declarativeway. The original HaskellDB [10] by Daan Leijen and
Erik Meijer introduced the idea of describing database operations
using a phantom typed relational algebra-like embedded domain
specific language. However, because of its use of TRex [2], the

Submitted to Haskell Workshop 2004.

original version of HaskellDB was limited to working with outdated
versions of Hugs. The only available database backend used the Mi-
crosoft ADO database interface, which is only available under Mi-
crosoft Windows. Thus HaskellDB was satisfactory as a proof of
concept, but not as a generally useful database library for Haskell.

We have implemented a number of changes to HaskellDB in order
to address these problems and make it a more practical database li-
brary. This paper has three main parts. First we describe how to
write programs using our version of HaskellDB, then we detail our
changes and additions, and finally we discuss some of the advan-
tages of and remaining problems with HaskellDB.

2 Motivation

There are two other well-known database interfaces for Haskell:

• HSQLis an SQL based interface to several different database
systems, currently ODBC, MySQL, PostgreSQL and SQLite.
The only user-visible difference between the backends is the
need to use different connection functions, all other functions
are common to all backends.

• wxHaskell[9] is a set of Haskell bindings to the wxWidgets
GUI toolkit, which includes an ODBC interface.

SQL based database interfaces like those above and most database
interfaces for other programming languages have a number of draw-
backs:

• Syntactically or semantically invalid queries are not detected
until they are executed. This means that it takes longer to
debug queries and that invalid queries may go undetected.

• Queries are created by string manipulation, which can lead to
security problems such as SQL injection vulnerabilities [1].

• The developer is forced to work in two separate languages:
SQL and a general purpose programming language.

The original HaskellDB seems to be a good way to avoid these
problems, and our goal has been to modify it to work with cur-
rent versions of the mainstream Haskell implementations and with
a broader spectrum of database interfaces.

3 Using HaskellDB

We begin by describing briefly how to use HaskellDB. HaskellDB
supports a number of different backends. In the following examples
we will use the HSQL MySQL driver, but any other driver could be

used by using a different connection function. Queries are written
in the same way independently of the backend.

3.1 Getting started

3.1.1 Creating database tables

To use HaskellDB, one needs database tables to work on. It is pos-
sible to create these using HaskellDB (see 3.3), or by using some
database specific method.

3.1.2 Generating a database description

The database layout description declares the types of the database
tables. If the database layout is changed in any way, the layout
description needs to be regenerated. However, such changes are
normally only made during development, not as part of ordinary
program usage.

HaskellDB includes a program called DBDirect to create these
database descriptions, see section 4.5.

3.1.3 Connecting to the database

Depending on which underlying database is used, one needs to
import an appropriate driver module. To perform queries on the
database we define a “connecting function”. By using this func-
tion, the program becomes independent of the underlying database.
When switching to another database, this is the only function that
needs to be modified.

import Database.HaskellDB.HSQL.MySQL
opts = MySQLOptions {

server="myServer", db="myDataBase",
uid="userID", pwd="password"}

withDB :: (Database -> IO a) -> IO a
withDB = mysqlConnect opts

3.2 Querying the database

Queries are written in theQuery monad. To get the result of a query
it must be run against the database.

query :: GetRec er vr =>
Database -> Query (Rel er) -> IO [Row vr]

TheGetRec constraint means that thevr type is the same as theer
type, but with normal Haskell value types (such asInt) as record
values, instead of HaskellDB query expressions of that type (such
asExpr Int). Expr will be introduced later in this section.

The following example prints the contents of the tablefarmers.
Note the use ofwithDB.

import Farming
desc = withDB $

\db -> do rows <- query db (table farmers)
mapM_ (putStrLn.show) rows

A typical query often consists of these three parts:

1. Fetching tables— select the tables needed for the query

2. Restrictions on tables— limit what rows to return

3. Projections on tables— limit what fields to return

The next query operates on a database containing names and phone
numbers. It prints all the Johns and their respective phone numbers.

Note that a query will only returnuniquerows, in the sense that the
result will never contain two identical rows.

aQuery =
do tbl <- table phoneBook

restrict (tbl!firstName .==. constant "John")
project (lastName << tbl!lastName #

phoneNo << tbl!phoneNo)

listJohns = mapM_ (putStrLn . showRow)
where
showRow r = r!lastName ++ " " ++ r!phoneNo

runQuery = withDB $ \db ->
query db aQuery >>= listJohns

The result ofrunQuery might look something like this:

> runQuery
Hughes 031-7721001
Doe 031-184442

3.2.1 Some query operators

The previous example uses the equality operator(.==.). Most
common binary operators have a corresponding operator for use
in a query. The types of some representative operators are:

(.==.) :: Eq a => Expr a -> Expr a -> Expr Bool
(.<.) :: Ord a => Expr a -> Expr a -> Expr Bool
(.+.) :: Num a => Expr a -> Expr a -> Expr a
(.&&.) :: Expr Bool -> Expr Bool -> Expr Bool

The operators are translated to the corresponding operators used by
the database backend, e.g. SQL operators.

Expr provides type safety by adding a phantom type to the under-
lying type,PrimExpr. Expr is defined in the following way:

data Expr a = Expr PrimExpr

The next example illustrates a query which joins two tables and
uses an aggregate expression. The tablefriendsdescribes friendship
relations between people. For example,Mary knowsChucky. The
second table,petowners, describes how many pets a person has.
For example,Chucky has4 pets. The query below lists the people
in the person column of the first table, and the total number of
pets that their friends have. We first join the two tablesfriends
andpetownerson thefriend andowner fields. Conceptually, this
gives us the intermediate relationt1. The final projection gives the
relationresult.

q = do f <- table friends
p <- table petowners
restrict (f!friend .==. p!owner)
project (person << f!person #

pets << _sum (p!pets))

3.3 Changing the database layout

It can be useful to be able to create database tables with HaskellDB,
for example when distributing a program that uses a database. Here
we create the layout for the tables used in the previous example:

Table 1. Thefriends table
person friend
Björn Mardy
Mary Chucky
Björn Chucky

Table 2. Thepetownerstable
owner pets
Mardy 3
Chucky 4

import Database.HaskellDB.Database (createTable)
import MyConnection (withDB)
import Database.HaskellDB.FieldType

createTables =
withDB $ \db ->
do createTable db "friends"

[("person",(StringT,False)),
("friend",(StringT,False))]

createTable db "petowners"
[("owner",(StringT,False)),
("pets",(IntT,False))]

3.3.1 Creating a fake field

In certain situations it may be necessary to put information into a
field that does not exist in the database. For example, a field of type
Int is needed to be able to retrieve the results of acount opera-
tion. Since the record type representation requires that all fields be
declared, a “fake” field must be declared if there is no field of the
right type. Declaring a new field is somewhat involved, see section
4.2.1 for more information.

4 Implementation

4.1 Overview

HaskellDB consists of two parts, one for specifying operations and
one for generating database descriptions. The latter part also has
a way of creating a database from a description. This section will
mainly cover the part that operates on a database. We only discuss
our additions to HaskellDB. The reader is encouraged to read Lei-
jen’s PhD Thesis [8] for more information on the basic theory and
implementation of HaskellDB.

Queries are written in HaskellDB using a monadic embedded lan-
guage. The surface layer is a set of phantom typed wrappers around
an untyped relational algebra-like structure, PrimQuery. This struc-
ture is optimised, converted into the database query language (cur-
rently only SQL), and sent to the database via a database binding
(currently wxHaskell or HSQL).

Table 3. Thet1 relation
person friend owner pets
Björn Mardy Mardy 3
Mary Chucky Chucky 4
Björn Chucky Chucky 4

Table 4. Theresult relation
person pets
Björn 7
Mary 4

4.2 Records

The original HaskellDB used the record types offered by TRex [2]
to represent the types of relations and database rows. TRex is a
Haskell extension which is only available in the Hugs interpreter.
In order to make HaskellDB more portable, we have devised a sys-
tem for extensible records which only requires extensions imple-
mented in both Hugs and GHC. The required extensions include
multi-parameter type classes [12], overlapping instances and func-
tional dependencies [6].

A record is either the empty record, or a field and a record:

data RecNil = RecNil
data RecCons f a b = RecCons a b

The type parameters ofRecCons are the field label type, the field
value type and the type of the rest of the record.

4.2.1 Field labels

Singleton types are used as field labels. The field labels are in-
cluded in the type of the record, but they are not present in the
actual record, as the identity of a field label can be determined from
its type. In order to convert records to and from strings, the label
must be an instance of theFieldTag class:

class FieldTag f where
fieldName :: f -> String

For example, in order to introduce a labelName with string repre-
sentation “name”, we write:

data Name = Name
instance FieldTag Name where

fieldName _ = "name"

In order to make type inference of record selection easier and to get
a more TRex-like syntax, we wrap the actual field labels in a label
type which includes the type of the associated field value.

name :: Attr Name (Maybe Int)
name = mkAttr Name

TheAttr type is HaskellDB-specific; the general record functions
can use any type constructor of kind* -> * -> *.

4.2.2 Record construction

Record construction is similar to list construction since a record is
either the empty record, or a field and a record. We would like to
be able to construct records using a concise and intuitive syntax, as
is possible with TRex records and ordinary Haskell lists. However,
since we do not rely on any syntactic extensions, we are constrained
to using normal Haskell operators for record construction. We use
(.=.) to construct a single-field record from a label and a value,
and(#) to add a single-field record to a record:

(name .=. "Foo" # age .=. 163)

If record construction was implemented in the most straightforward
way, the user would have to end each record withRecNil. In order
to avoid this, we introduce the type constructorRecord:

type Record r = RecNil -> r

In theRecord type, the empty record is represented by the identity
function. Using this type, the(.=.) and(#) operators are imple-
mented as follows:

infix 6 .=.
infixr 5 #

(.=.) :: l f a -> a
-> Record (RecCons f a RecNil)

_ .=. x = RecCons x

(#) :: Record (RecCons f a RecNil)
-> (b -> c) -> (b -> RecCons f a c)

f # r = let RecCons x _ = f RecNil
in RecCons x . r

Note that(.=.) is not the same as the field construction operator
used in HaskellDB queries,(<<). They have the same implemen-
tation, but different types, since(<<) is used to create records of
HaskellDB query expressions with the same labels that are used in
the query results.

(<<) :: Attr f a -> e a
-> Record (RecCons f (e a) RecNil)

_ << x = RecCons x

4.2.3 Field selection

Since different records have different types, all generic record op-
erations must be overloaded. Most operations are implemented by
recursing through the record. Field selection is shown below as an
example:

class SelectField f r a where
selectField :: f -> r -> a

instance SelectField f (RecCons f a r) a
where selectField _ (RecCons x _) = x

instance SelectField f r a =>
SelectField f (RecCons g b r) a

where selectField f (RecCons _ r)
= selectField f r

instance SelectField f r a =>
SelectField f (Record r) a

where selectField f r
= selectField f (r RecNil)

Given a field label and a record,selectField returns the value
of the field with that label. TheSelectField type class has an
instance for the typesf r a if and only if the record typer has a
field with a label of typef and a value of typea.

• The first instance covers the case where the field that we want
is at the head of the record. In this case the value in the first
field is simply returned.

• The second instance applies when the field exists in the tail of
the record, in which caseselectField is called on the tail.

• The third instance is there to allow usingselectField di-
rectly on elements ofRecord r.

The first two instances overlap, but the first one requires that the
label type that we are looking for is the same as the label type in the
record field, making it more specific than the second one. Note that
this means that if the same label occurs twice in the same record,
the first field with that label will be used.

The heavy lifting involved in field selection is done by
selectField. However, since there are no functional dependen-
cies between the type parameters in theSelectField class, the
return type of aselectField application cannot be inferred from
the types of the arguments. The field selection operator(!) takes
care of this problem, and allows us to use the TRex lookalike labels
introduced above.

class Select f r a | f r -> a where
(!) :: r -> f -> a

instance SelectField f r a =>
Select (l f a) (Record r) a where

r ! (_::l f a)
= selectField (undefined::f) r

(!) is declared in a type class, so that it may be overloaded by
users. An example of this is discussed briefly in section 4.7.4.

4.2.4 Evaluation

Our system is less powerful than TRex, but it contains most of the
features that HaskellDB requires. The main differences compared
to TRex are that we do not have thelacks predicate and there-
strictionoperation, that the order of the fields is significant and that
labels must be declared. Our syntax, especially the type syntax, is
more awkward since we do not rely on syntactic extensions. The
major advantage is that our system only requires more widely im-
plemented language extensions.

Without thelackspredicate, we cannot ensure that labels occur at
most once in every record. It seems difficult to implement alacks
predicate without type inequality constraints or negated type class
instance constraints, neither of which Haskell supports.

Note:After implementing this system, a similar but more ambitious
effort to create extensible records using only common Haskell ex-
tensions has come to our attention [7]. The main advantage of that
system over ours seems to be that it contains alackspredicate.

4.3 Bounded strings

When using the SQL types VARCHAR(n) and CHAR(n), database
systems tend to silently truncate inputs longer thann. To be able to
give users feedback andtype safetyagainst this, we allow treating
VARCHAR and CHAR fields asbounded strings.

The maximum length of a bounded string is encoded in its type.
Having this information in the type can prevent unexpected loss of
data.

4.3.1 Usage

For example, a bounded string with maximum size 255 is created
using eithertrunc or toBounded as follows:

newStr :: BStr255
newStr = trunc "teststring"

newMaybeStr :: Maybe BStr255
newMaybeStr = toBounded "teststring"

toBounded returnsNothing if the argument is larger than the spec-
ified maximum size, which enables runtime feedback. Iftrunc is
used to create bounded strings no such feedback is possible. Exist-
ing bounded strings can be manipulated usingshrink or grow:

shrink :: (Size n, Size m) => BoundedList a n
-> Maybe (BoundedList a m)

grow :: LessEq n m =>
BoundedList a n -> BoundedList a m

Using the example above,shrink newStr will evaluate to
Nothing since the length of “teststring” is larger than 8.

4.3.2 Implementation details

The implementation of bounded strings are based on a more general
data type calledBoundedList as follows:

type BoundedString n = BoundedList Char n
type BStr1 = BoundedString N1
type BStr2 = BoundedString N2

.

.
type BStr255 = BoundedString N255

HereBoundedList Char n is a list of Char with maximum size
set by the phantom type parametern. To implement bounded lists,
each possible size is declared using two type classes:

class Size n where
size :: n -> Int

class (Size a, Size b) => Less a b

Sizes are declared as singleton types:

data N255 = N255

A more natural encoding would be:

data Zero = Zero
data Succ n = Succ n

However, for large bounds such as 65535 (the maximum size of
some SQL data types) such types become large enough to be very
impractical.

The Size instance is used bytoBounded when determining
whether the list to be converted will fit inside the type or not.

instance Size N255 where size _ = 255

TheLess relation between the different sizes can be built up in two
different ways:

1. Building up the relation inductively

In HaskellDB we have used this implementation since it re-
quires much less code and results in faster compilation than
the second approach.

instance Less N254 N255
instance Less a N254 => Less a N255

The first instance declares that the largest smaller size is less
than this size. The second instance ensures that any size
smaller than the next smaller size is also less than this size.
This definition requires that the Haskell implementation sup-
ports “undecidable instances”. Note that the use of this exten-
sion is safe in this case, asLess is a well-founded order on
the set of sizes.

2. Hardcoding the relation

This requiresθ(n2) instances and takes very long time to type
check. We mention this approach here because it is the sim-
plest and does not require the “undecidable instances” exten-
sion.

instance Less N1 N255
instance Less N2 N255

.

.
instance Less N254 N255

The classLessEq used in the declaration ofgrow is defined as fol-
lows:

class (Size a, Size b) => LessEq a b
instance (Size a) => LessEq a a
instance (Size a, Size b, Less a b) => LessEq a b

This ensures thatgrow is not used to shrink bounded lists.

4.4 Backend independence

In the original version of HaskellDB, the type of database handles
was parametrised over the database driver’s connection handle type
and the type used for result rows in the driver. This made it difficult
to write a generic connection function that chooses the database
driver to use based on, for example, a connection string.

The database handle parameter was removed by using an idiom
similar to interface implementation in an object oriented language.
This was inspired by a similar system used in the implementation
of HSQL. The general HaskellDB driver interface does not know
anything about the private data needed by the implementation to
talk to the database. Below, we will use the implementation of the
dbInsert function in the HaskellDB HSQL driver as an example.
The HSQL driver has a functionhsqlInsert which implements
dbInsert. When theDatabase object is created,hsqlInsert is
partially applied to the connection handle (which is of the HSQL-
specific typeConnection), giving a function which can be used as
dbInsert.

Generic database driver interface:

data Database = Database
{ ...,

dbInsert :: TableName -> Assoc -> IO (),
... }

Database driver implementation:

mkDatabase :: Connection -> Database
mkDatabase connection = Database

{ ...,

dbInsert = hsqlInsert connection,
... }

hsqlInsert :: Connection -> TableName
-> Assoc -> IO ()

After establishing a connection to the database, the HSQL driver
passes the connection handle tomkDatabase, which returns a
Database object where all the functions have been partially applied
to the connection handle.

The second obstacle to making a singleDatabase type for all
drivers was the result row type parameter. Since we have imple-
mented records, and query results have record types, it seemed
natural to make result rows records. This means that all database
drivers now use the same representation for query results — a list
of records.

4.5 DBDirect

DBDirect is a program which automatically generates database de-
scriptions from an existing database. Originally, DBDirect was
only able to generate descriptions for databases using the Microsoft
ADO interface, but the current version works with any database for
which there is a HaskellDB driver.

However, users soon requested a way to generate databases directly
from Haskell code. We decided to implement this feature and at
the same time make the system more general. We call this system
DBSpec.

DBSpec is rather simple in its construction, yet powerful. It is im-
plemented as a record of the type:

data DBInfo = DBInfo {dbname :: String,
opts :: DBOptions,
tbls :: [TInfo]}

DBOptions describes the particular options we wish to use (cur-
rently only whether we want bounded strings or not).TInfo de-
scribes a table in the database, and is implemented similarly to
DBInfo.

This system provides several advantages compared to the old one:

• Can generate databases directly from Haskell — no knowl-
edge of SQL is needed.

• Easier overview of databases.

• Easier to extend than the original version.

4.6 Optimisation fixes

A few problems were found in the optimisation code in the original
HaskellDB.

4.6.1 Aggregates in restriction and ordering

Pushing an ordering or a restriction through a projection can cause
the ordering to use an aggregate expression, which is not allowed
in SQL. This was fixed by not pushing orderings and restrictions
through projections if it will make them contain any aggregate ex-
pressions.

4.6.2 Merging projections through multiplication

In the original HaskellDB, “project (project op project)” would be
optimised by removing the outer projection and merging it with the
two inner ones. This does not work if the operator is multiplication,
since the outer projection will use attributes defined in only one of
the inner projections. Thus this optimisation was disabled when the
operator is multiplication.

4.6.3 Projections on empty queries

Originally, a projection on an empty query would be optimised to
the empty query. This cannot be done in general, as the projec-
tion may contain constant entries that do not come from some inner
relation. Thus this optimisation was removed.

4.7 Minor changes

4.7.1 Fine grained expression types

In the original version of HaskellDB there was a single type for
all expressions. However, in SQL some classes of expressions can
only occur in certain parts of a statement. To allow the type sys-
tem to check this we add two more types of expressions, which are
described in the following sections, and introduce a type class for
expressions:

class ExprC e where
primExpr :: e a -> PrimExpr

instance ExprC Expr where
primExpr (Expr e) = e

4.7.2 Aggregates only in projections

One example of expressions which cannot be used everywhere are
aggregate expressions, such as those using_sum or count. In
SQL, aggregate expressions can only be used in projection clauses,
and it would be desirable for the HaskellDB type system to enforce
this restriction. This problem was solved by introducing a sepa-
rate type for aggregate expressions,ExprAggr, and a type class,
ProjectExpr, for expressions that can be used in projections.

4.7.3 Default values and auto increment columns

SQL supports the notion of default values for columns. Theauto
increment(or serial) features found in for example MySQL and
PostgreSQL interpret the default value as being the next value in
the sequence used for the column values. In order to support
these features, we have added a_default construct with type
ExprDefault a. In order to restrict the use of default values to
insertions, a new type class for expressions that can be used in in-
sertions,InsertExpr, was added.

4.7.4 Overloaded field selection

Originally, the operator(!) was used in HaskellDB for field se-
lection inside queries, and(!.) for field selection in query results.
From experience working with HaskellDB and helping users, we
found that this distinction is difficult to keep in mind. To provide a
more unified interface, the two operators were replaced by an over-
loaded(!) operator.

4.7.5 Case

A case construct was added to support conditional evaluation in
queries:

_case :: [(Expr Bool, Expr a)] -> Expr a -> Expr a

The boolean expressions are evaluated until one of them matches,
and the value of the corresponding expression is returned. If no
condition is true, the value of the second argument is returned.

4.7.6 Converting from nullable types

The original HaskellDB has no facilities for converting from nul-
lable to non-nullable types. We added afromNull function to do
this:

fromNull :: Expr a -> Expr (Maybe a) -> Expr a

4.7.7 Transactions

Support for transactions has been added. The transaction function
starts a transaction, performs some database operations and com-
mits the changes. If an exception is raised during the execution of
the database operations, the transaction is rolled back.

transaction :: Database -> IO a -> IO a

5 Evaluation

5.1 Advantages

This section describes some of the advantages of using HaskellDB
compared to using most SQL based systems.

5.1.1 Query correctness

Syntactic correctness and type correctness for all database opera-
tions are checked by the Haskell compiler at compile time, instead
of by the database system when the operation is performed.

Automatic quoting of supplied constants prevents SQL injection
vulnerabilities [1].

5.1.2 Ease of programming

With HaskellDB the program/debug cycle is much faster since most
errors are caught at compile time instead of at runtime.

There is no need for the programmer to use or even know SQL;
knowledge of Haskell and relational database basics should suffice.

5.1.3 Expressive power

Since queries are written in Haskell, the full power of the Haskell
programming language is available. This means that common pat-
terns can be abstracted out. For example, one can write a query
that does all the necessary joins and projections to get some often
used relation, and then use that query in constructing more specific
queries by adding restrictions, projections and orderings.

5.1.4 Platform independence

A HaskellDB program can use any supported backend by simply
changing the connection function used.

5.2 Disadvantages

This section outlines some of the drawbacks of HaskellDB in its
current state and proposes some possible solutions.

5.2.1 Type errors

The type error messages produced by invalid HaskellDB programs
can be quite verbose and difficult to understand without intimate
knowledge of the record type implementation. For example, if you
try to select a field from a record which does not have that field, the
compiler will complain that there is no instance ofSelectField
for that record type. Due to the implementation of record types
with algebraic data types, the record type itself will be quite large.
Ideally the compiler should report that there is no field with that
label in the record, and give a concise representation of the record
type.

There a number of ways in which this problem could be mitigated:

• In Helium [4] a system for scripting the type inference pro-
cess [3] is implemented. This could potentially be used to
generate better error messages for type errors related to the
record types.

• Having records as a language extension,like TRex, would be
likely to lead to more understandable error messages.

• Using infix type constructors(as supported by GHC) could
make the record type representations more palatable.

5.2.2 Non-standard SQL

The SQL92 standard [5] is silent on a number of issues. One exam-
ple is whetherLIKE should perform case sensitive or case insensi-
tive matching. Another example is that SQL92 does not provide a
way to limit the number of results returned by a query. As a result,
different database systems have implemented these features differ-
ently. This means that the behaviour of HaskellDB programs are
not completely independent of which backend is used.

This problem could be partly solved by letting the database drivers
have a say in how HaskellDB queries are compiled to SQL. How-
ever, this would be difficult with drivers such as ODBC, which sup-
port multiple backend systems.

5.2.3 Declaring field labels

As described in section 3.3.1, if the fields declared in the database
layout module are not enough to create all desired queries, new
labels must be explicitly declared.

The effort involved in declaring field labels can be reduced by using
a simple Template Haskell [13] function. The HaskellDB distribu-
tion includes an example of how that can be done.

5.2.4 Repeated field labels

The current record implementation allows a field label to be used
multiple times in the same record. This leads to undesirable results,

as it may cause the wrong value to be retrieved or invalid SQL to be
generated. This could be solved by implementing alackspredicate
for the record types [7].

5.2.5 Concurrent lazy queries

Some database drivers do not allow a client to have multiple query
results open concurrently. This means that if the client performs a
lazy query and does not use all the results before performing a new
query, an exception may be raised.

5.2.6 Recompilation

HaskellDB programs must be recompiled whenever the database
layout is changed. Since the type system depends on the database
layout, this is difficult to avoid. However, the application normally
needs to be modified anyway whenever the layout of some part of
the database changes. An interactive Haskell interpreter may be
used to reduce the time needed for recompilation.

5.2.7 Dynamic driver loading

Since there is no standard way to load Haskell modules dynami-
cally, HaskellDB programs must import, and thus be linked against,
all the database drivers that they may use. This makes it difficult
to write and distribute compiled database driver independent pro-
grams.

This problem could be solved by using thehs-pluginssystem for
dynamic module loading [11].

6 Conclusions

Our users and we ourselves have implemented a number of applica-
tions using HaskellDB. Existing applications include a web forum,
blogging software, a mailing list search application, an RSS feed
generator and a web based collaboration tool. The static checking,
power and portability of HaskellDB make it a productive environ-
ment for developing database applications in Haskell.

We have shown that (somewhat limited) extensible records can
be implemented without extending Haskell beyond the extensions
already available in Hugs and GHC. We have also implemented
bounded lists in Haskell with extensions, something which is typi-
cally used as an example of the usefulness of dependent types.

The version of HaskellDB discussed in this paper, along with doc-
umentation and further examples, is available from
http://haskelldb.sourceforge.net/

Acknowledgements

We would like to thank John Hughes for supervising our project
and for giving feedback on this paper, Daan Leijen and Erik Mei-
jer for creating the original HaskellDB, Krasimir Angelov for his
work on HSQL, Shae Erisson, Jeremy Shaw, Tom Moertel, Esa Ilari
Vuokko, Thomas Bevan, Martijn Wijffelaars and Kees van Kooten
for suggestions, patches and bug reports, and the anonymous refer-
ees for their many helpful comments and suggestions.

7 Additional Authors

Conny Andersson,forester@dtek.chalmers.se
Martin Andersson,mardy@dtek.chalmers.se
Mary Bergman,d99mary@dtek.chalmers.se
Victor Blomqvist,viblo@dtek.chalmers.se
Torbjörn Martin,torma@dtek.chalmers.se

Department of Computing Science
Chalmers University of Technology

8 References

[1] CERT Vulnerability Note VU#282403, Sept. 2002.

[2] B. R. Gaster and M. P. Jones. A Polymorphic Type Sys-
tem for Extensible Records and Variants. Technical Report
NOTTCS-TR-96-3, Department of Computer Science, Uni-
versity of Nottingham, Nov. 1996.

[3] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type in-
ference process. InProceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages
3–13. ACM Press, 2003.

[4] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for
learning Haskell. InProceedings of the ACM SIGPLAN work-
shop on Haskell, pages 62–71. ACM Press, 2003.

[5] International Organization for Standardization.ISO/IEC
9075:1992: Title: Information technology — Database lan-
guages — SQL. International Organization for Standardiza-
tion, Geneva, Switzerland, 1992. Available in English only.

[6] M. P. Jones. Type Classes with Functional Dependencies. In
Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230–244. Springer-Verlag,
2000.

[7] O. Kiselyov, R. L̈ammel, and K. Schupke. Strongly typed het-
erogeneous collections. InACM SIGPLAN Haskell Workshop
(HW’04). ACM Press, Sept. 2004.

[8] D. Leijen. Theλ Abroad - A Functional Approach to Software
Components. PhD thesis, Utrecht University, Nov. 2003.

[9] D. Leijen. wxhaskell – a portable and concise GUI library
for Haskell. InACM SIGPLAN Haskell Workshop (HW’04).
ACM Press, Sept. 2004.

[10] D. Leijen and E. Meijer. Domain-Specific Embedded Com-
pilers. In USENIX, editor,Proceedings of the 2nd Confer-
ence on Domain-Specific Languages (DSL ’99), October 3–
5, 1999, Austin, Texas, USA, pages 109–122, Berkeley, CA,
USA, 1999. USENIX.

[11] A. Pang, D. Stewart, S. Seefried, and M. M. T. Chakravarty.
Plugging Haskell In. InACM SIGPLAN Haskell Workshop
(HW’04). ACM Press, Sept. 2004.

[12] S. Peyton Jones, M. Jones, and E. Meijer. Type classes:
Exploring the design space. InProceedings of the Second
Haskell Workshop, June 1997.

[13] T. Sheard and S. Peyton Jones. Template metaprogramming
for Haskell. In M. M. T. Chakravarty, editor,ACM SIGPLAN
Haskell Workshop 02, pages 1–16. ACM Press, Oct. 2002.

