/* ----------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2008 * * Storage manager front end * * Documentation on the architecture of the Storage Manager can be * found in the online commentary: * * http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage * * ---------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include "Storage.h" #include "RtsUtils.h" #include "Stats.h" #include "BlockAlloc.h" #include "Weak.h" #include "Sanity.h" #include "Arena.h" #include "Capability.h" #include "Schedule.h" #include "RetainerProfile.h" // for counting memory blocks (memInventory) #include "OSMem.h" #include "Trace.h" #include "GC.h" #include "Evac.h" #include #include "ffi.h" /* * All these globals require sm_mutex to access in THREADED_RTS mode. */ StgClosure *caf_list = NULL; StgClosure *revertible_caf_list = NULL; rtsBool keepCAFs; nat alloc_blocks_lim; /* GC if n_large_blocks in any nursery * reaches this. */ bdescr *exec_block; generation *generations = NULL; /* all the generations */ generation *g0 = NULL; /* generation 0, for convenience */ generation *oldest_gen = NULL; /* oldest generation, for convenience */ nursery *nurseries = NULL; /* array of nurseries, size == n_capabilities */ #ifdef THREADED_RTS /* * Storage manager mutex: protects all the above state from * simultaneous access by two STG threads. */ Mutex sm_mutex; #endif static void allocNurseries ( void ); static void initGeneration (generation *gen, int g) { gen->no = g; gen->collections = 0; gen->par_collections = 0; gen->failed_promotions = 0; gen->max_blocks = 0; gen->blocks = NULL; gen->n_blocks = 0; gen->n_words = 0; gen->live_estimate = 0; gen->old_blocks = NULL; gen->n_old_blocks = 0; gen->large_objects = NULL; gen->n_large_blocks = 0; gen->n_new_large_blocks = 0; gen->mut_list = allocBlock(); gen->scavenged_large_objects = NULL; gen->n_scavenged_large_blocks = 0; gen->mark = 0; gen->compact = 0; gen->bitmap = NULL; #ifdef THREADED_RTS initSpinLock(&gen->sync_large_objects); #endif gen->threads = END_TSO_QUEUE; gen->old_threads = END_TSO_QUEUE; } void initStorage( void ) { nat g, n; if (generations != NULL) { // multi-init protection return; } initMBlocks(); /* Sanity check to make sure the LOOKS_LIKE_ macros appear to be * doing something reasonable. */ /* We use the NOT_NULL variant or gcc warns that the test is always true */ ASSERT(LOOKS_LIKE_INFO_PTR_NOT_NULL((StgWord)&stg_BLOCKING_QUEUE_CLEAN_info)); ASSERT(LOOKS_LIKE_CLOSURE_PTR(&stg_dummy_ret_closure)); ASSERT(!HEAP_ALLOCED(&stg_dummy_ret_closure)); if (RtsFlags.GcFlags.maxHeapSize != 0 && RtsFlags.GcFlags.heapSizeSuggestion > RtsFlags.GcFlags.maxHeapSize) { RtsFlags.GcFlags.maxHeapSize = RtsFlags.GcFlags.heapSizeSuggestion; } if (RtsFlags.GcFlags.maxHeapSize != 0 && RtsFlags.GcFlags.minAllocAreaSize > RtsFlags.GcFlags.maxHeapSize) { errorBelch("maximum heap size (-M) is smaller than minimum alloc area size (-A)"); RtsFlags.GcFlags.minAllocAreaSize = RtsFlags.GcFlags.maxHeapSize; } initBlockAllocator(); #if defined(THREADED_RTS) initMutex(&sm_mutex); #endif ACQUIRE_SM_LOCK; /* allocate generation info array */ generations = (generation *)stgMallocBytes(RtsFlags.GcFlags.generations * sizeof(struct generation_), "initStorage: gens"); /* Initialise all generations */ for(g = 0; g < RtsFlags.GcFlags.generations; g++) { initGeneration(&generations[g], g); } /* A couple of convenience pointers */ g0 = &generations[0]; oldest_gen = &generations[RtsFlags.GcFlags.generations-1]; nurseries = stgMallocBytes(n_capabilities * sizeof(struct nursery_), "initStorage: nurseries"); /* Set up the destination pointers in each younger gen. step */ for (g = 0; g < RtsFlags.GcFlags.generations-1; g++) { generations[g].to = &generations[g+1]; } oldest_gen->to = oldest_gen; /* The oldest generation has one step. */ if (RtsFlags.GcFlags.compact || RtsFlags.GcFlags.sweep) { if (RtsFlags.GcFlags.generations == 1) { errorBelch("WARNING: compact/sweep is incompatible with -G1; disabled"); } else { oldest_gen->mark = 1; if (RtsFlags.GcFlags.compact) oldest_gen->compact = 1; } } generations[0].max_blocks = 0; /* The allocation area. Policy: keep the allocation area * small to begin with, even if we have a large suggested heap * size. Reason: we're going to do a major collection first, and we * don't want it to be a big one. This vague idea is borne out by * rigorous experimental evidence. */ allocNurseries(); weak_ptr_list = NULL; caf_list = END_OF_STATIC_LIST; revertible_caf_list = END_OF_STATIC_LIST; /* initialise the allocate() interface */ alloc_blocks_lim = RtsFlags.GcFlags.minAllocAreaSize; exec_block = NULL; #ifdef THREADED_RTS initSpinLock(&gc_alloc_block_sync); whitehole_spin = 0; #endif N = 0; // allocate a block for each mut list for (n = 0; n < n_capabilities; n++) { for (g = 1; g < RtsFlags.GcFlags.generations; g++) { capabilities[n].mut_lists[g] = allocBlock(); } } initGcThreads(); IF_DEBUG(gc, statDescribeGens()); RELEASE_SM_LOCK; } void exitStorage (void) { stat_exit(calcAllocated()); } void freeStorage (rtsBool free_heap) { stgFree(generations); if (free_heap) freeAllMBlocks(); #if defined(THREADED_RTS) closeMutex(&sm_mutex); #endif stgFree(nurseries); freeGcThreads(); } /* ----------------------------------------------------------------------------- CAF management. The entry code for every CAF does the following: - builds a BLACKHOLE in the heap - pushes an update frame pointing to the BLACKHOLE - calls newCaf, below - updates the CAF with a static indirection to the BLACKHOLE Why do we build an BLACKHOLE in the heap rather than just updating the thunk directly? It's so that we only need one kind of update frame - otherwise we'd need a static version of the update frame too. newCaf() does the following: - it puts the CAF on the oldest generation's mutable list. This is so that we treat the CAF as a root when collecting younger generations. For GHCI, we have additional requirements when dealing with CAFs: - we must *retain* all dynamically-loaded CAFs ever entered, just in case we need them again. - we must be able to *revert* CAFs that have been evaluated, to their pre-evaluated form. To do this, we use an additional CAF list. When newCaf() is called on a dynamically-loaded CAF, we add it to the CAF list instead of the old-generation mutable list, and save away its old info pointer (in caf->saved_info) for later reversion. To revert all the CAFs, we traverse the CAF list and reset the info pointer to caf->saved_info, then throw away the CAF list. (see GC.c:revertCAFs()). -- SDM 29/1/01 -------------------------------------------------------------------------- */ void newCAF(StgRegTable *reg, StgClosure* caf) { if(keepCAFs) { // HACK: // If we are in GHCi _and_ we are using dynamic libraries, // then we can't redirect newCAF calls to newDynCAF (see below), // so we make newCAF behave almost like newDynCAF. // The dynamic libraries might be used by both the interpreted // program and GHCi itself, so they must not be reverted. // This also means that in GHCi with dynamic libraries, CAFs are not // garbage collected. If this turns out to be a problem, we could // do another hack here and do an address range test on caf to figure // out whether it is from a dynamic library. ((StgIndStatic *)caf)->saved_info = (StgInfoTable *)caf->header.info; ACQUIRE_SM_LOCK; // caf_list is global, locked by sm_mutex ((StgIndStatic *)caf)->static_link = caf_list; caf_list = caf; RELEASE_SM_LOCK; } else { // Put this CAF on the mutable list for the old generation. ((StgIndStatic *)caf)->saved_info = NULL; if (oldest_gen->no != 0) { recordMutableCap(caf, regTableToCapability(reg), oldest_gen->no); } } } // External API for setting the keepCAFs flag. see #3900. void setKeepCAFs (void) { keepCAFs = 1; } // An alternate version of newCaf which is used for dynamically loaded // object code in GHCi. In this case we want to retain *all* CAFs in // the object code, because they might be demanded at any time from an // expression evaluated on the command line. // Also, GHCi might want to revert CAFs, so we add these to the // revertible_caf_list. // // The linker hackily arranges that references to newCaf from dynamic // code end up pointing to newDynCAF. void newDynCAF (StgRegTable *reg STG_UNUSED, StgClosure *caf) { ACQUIRE_SM_LOCK; ((StgIndStatic *)caf)->saved_info = (StgInfoTable *)caf->header.info; ((StgIndStatic *)caf)->static_link = revertible_caf_list; revertible_caf_list = caf; RELEASE_SM_LOCK; } /* ----------------------------------------------------------------------------- Nursery management. -------------------------------------------------------------------------- */ static bdescr * allocNursery (bdescr *tail, nat blocks) { bdescr *bd = NULL; nat i, n; // We allocate the nursery as a single contiguous block and then // divide it into single blocks manually. This way we guarantee // that the nursery blocks are adjacent, so that the processor's // automatic prefetching works across nursery blocks. This is a // tiny optimisation (~0.5%), but it's free. while (blocks > 0) { n = stg_min(blocks, BLOCKS_PER_MBLOCK); blocks -= n; bd = allocGroup(n); for (i = 0; i < n; i++) { initBdescr(&bd[i], g0, g0); bd[i].blocks = 1; bd[i].flags = 0; if (i > 0) { bd[i].u.back = &bd[i-1]; } else { bd[i].u.back = NULL; } if (i+1 < n) { bd[i].link = &bd[i+1]; } else { bd[i].link = tail; if (tail != NULL) { tail->u.back = &bd[i]; } } bd[i].free = bd[i].start; } tail = &bd[0]; } return &bd[0]; } static void assignNurseriesToCapabilities (void) { nat i; for (i = 0; i < n_capabilities; i++) { capabilities[i].r.rNursery = &nurseries[i]; capabilities[i].r.rCurrentNursery = nurseries[i].blocks; capabilities[i].r.rCurrentAlloc = NULL; } } static void allocNurseries( void ) { nat i; for (i = 0; i < n_capabilities; i++) { nurseries[i].blocks = allocNursery(NULL, RtsFlags.GcFlags.minAllocAreaSize); nurseries[i].n_blocks = RtsFlags.GcFlags.minAllocAreaSize; } assignNurseriesToCapabilities(); } void resetNurseries( void ) { nat i; bdescr *bd; for (i = 0; i < n_capabilities; i++) { for (bd = nurseries[i].blocks; bd; bd = bd->link) { bd->free = bd->start; ASSERT(bd->gen_no == 0); ASSERT(bd->gen == g0); IF_DEBUG(sanity,memset(bd->start, 0xaa, BLOCK_SIZE)); } } assignNurseriesToCapabilities(); } lnat countNurseryBlocks (void) { nat i; lnat blocks = 0; for (i = 0; i < n_capabilities; i++) { blocks += nurseries[i].n_blocks; } return blocks; } static void resizeNursery ( nursery *nursery, nat blocks ) { bdescr *bd; nat nursery_blocks; nursery_blocks = nursery->n_blocks; if (nursery_blocks == blocks) return; if (nursery_blocks < blocks) { debugTrace(DEBUG_gc, "increasing size of nursery to %d blocks", blocks); nursery->blocks = allocNursery(nursery->blocks, blocks-nursery_blocks); } else { bdescr *next_bd; debugTrace(DEBUG_gc, "decreasing size of nursery to %d blocks", blocks); bd = nursery->blocks; while (nursery_blocks > blocks) { next_bd = bd->link; next_bd->u.back = NULL; nursery_blocks -= bd->blocks; // might be a large block freeGroup(bd); bd = next_bd; } nursery->blocks = bd; // might have gone just under, by freeing a large block, so make // up the difference. if (nursery_blocks < blocks) { nursery->blocks = allocNursery(nursery->blocks, blocks-nursery_blocks); } } nursery->n_blocks = blocks; ASSERT(countBlocks(nursery->blocks) == nursery->n_blocks); } // // Resize each of the nurseries to the specified size. // void resizeNurseriesFixed (nat blocks) { nat i; for (i = 0; i < n_capabilities; i++) { resizeNursery(&nurseries[i], blocks); } } // // Resize the nurseries to the total specified size. // void resizeNurseries (nat blocks) { // If there are multiple nurseries, then we just divide the number // of available blocks between them. resizeNurseriesFixed(blocks / n_capabilities); } /* ----------------------------------------------------------------------------- move_TSO is called to update the TSO structure after it has been moved from one place to another. -------------------------------------------------------------------------- */ void move_TSO (StgTSO *src, StgTSO *dest) { ptrdiff_t diff; // relocate the stack pointer... diff = (StgPtr)dest - (StgPtr)src; // In *words* dest->sp = (StgPtr)dest->sp + diff; } /* ----------------------------------------------------------------------------- split N blocks off the front of the given bdescr, returning the new block group. We add the remainder to the large_blocks list in the same step as the original block. -------------------------------------------------------------------------- */ bdescr * splitLargeBlock (bdescr *bd, nat blocks) { bdescr *new_bd; ACQUIRE_SM_LOCK; ASSERT(countBlocks(bd->gen->large_objects) == bd->gen->n_large_blocks); // subtract the original number of blocks from the counter first bd->gen->n_large_blocks -= bd->blocks; new_bd = splitBlockGroup (bd, blocks); initBdescr(new_bd, bd->gen, bd->gen->to); new_bd->flags = BF_LARGE | (bd->flags & BF_EVACUATED); // if new_bd is in an old generation, we have to set BF_EVACUATED new_bd->free = bd->free; dbl_link_onto(new_bd, &bd->gen->large_objects); ASSERT(new_bd->free <= new_bd->start + new_bd->blocks * BLOCK_SIZE_W); // add the new number of blocks to the counter. Due to the gaps // for block descriptors, new_bd->blocks + bd->blocks might not be // equal to the original bd->blocks, which is why we do it this way. bd->gen->n_large_blocks += bd->blocks + new_bd->blocks; ASSERT(countBlocks(bd->gen->large_objects) == bd->gen->n_large_blocks); RELEASE_SM_LOCK; return new_bd; } /* ----------------------------------------------------------------------------- allocate() This allocates memory in the current thread - it is intended for use primarily from STG-land where we have a Capability. It is better than allocate() because it doesn't require taking the sm_mutex lock in the common case. Memory is allocated directly from the nursery if possible (but not from the current nursery block, so as not to interfere with Hp/HpLim). -------------------------------------------------------------------------- */ StgPtr allocate (Capability *cap, lnat n) { bdescr *bd; StgPtr p; if (n >= LARGE_OBJECT_THRESHOLD/sizeof(W_)) { lnat req_blocks = (lnat)BLOCK_ROUND_UP(n*sizeof(W_)) / BLOCK_SIZE; // Attempting to allocate an object larger than maxHeapSize // should definitely be disallowed. (bug #1791) if (RtsFlags.GcFlags.maxHeapSize > 0 && req_blocks >= RtsFlags.GcFlags.maxHeapSize) { heapOverflow(); // heapOverflow() doesn't exit (see #2592), but we aren't // in a position to do a clean shutdown here: we // either have to allocate the memory or exit now. // Allocating the memory would be bad, because the user // has requested that we not exceed maxHeapSize, so we // just exit. stg_exit(EXIT_HEAPOVERFLOW); } ACQUIRE_SM_LOCK bd = allocGroup(req_blocks); dbl_link_onto(bd, &g0->large_objects); g0->n_large_blocks += bd->blocks; // might be larger than req_blocks g0->n_new_large_blocks += bd->blocks; RELEASE_SM_LOCK; initBdescr(bd, g0, g0); bd->flags = BF_LARGE; bd->free = bd->start + n; return bd->start; } /* small allocation (r.rCurrentAlloc; if (bd == NULL || bd->free + n > bd->start + BLOCK_SIZE_W) { // The CurrentAlloc block is full, we need to find another // one. First, we try taking the next block from the // nursery: bd = cap->r.rCurrentNursery->link; if (bd == NULL || bd->free + n > bd->start + BLOCK_SIZE_W) { // The nursery is empty, or the next block is already // full: allocate a fresh block (we can't fail here). ACQUIRE_SM_LOCK; bd = allocBlock(); cap->r.rNursery->n_blocks++; RELEASE_SM_LOCK; initBdescr(bd, g0, g0); bd->flags = 0; // If we had to allocate a new block, then we'll GC // pretty quickly now, because MAYBE_GC() will // notice that CurrentNursery->link is NULL. } else { // we have a block in the nursery: take it and put // it at the *front* of the nursery list, and use it // to allocate() from. cap->r.rCurrentNursery->link = bd->link; if (bd->link != NULL) { bd->link->u.back = cap->r.rCurrentNursery; } } dbl_link_onto(bd, &cap->r.rNursery->blocks); cap->r.rCurrentAlloc = bd; IF_DEBUG(sanity, checkNurserySanity(cap->r.rNursery)); } p = bd->free; bd->free += n; IF_DEBUG(sanity, ASSERT(*((StgWord8*)p) == 0xaa)); return p; } /* --------------------------------------------------------------------------- Allocate a fixed/pinned object. We allocate small pinned objects into a single block, allocating a new block when the current one overflows. The block is chained onto the large_object_list of generation 0. NOTE: The GC can't in general handle pinned objects. This interface is only safe to use for ByteArrays, which have no pointers and don't require scavenging. It works because the block's descriptor has the BF_LARGE flag set, so the block is treated as a large object and chained onto various lists, rather than the individual objects being copied. However, when it comes to scavenge the block, the GC will only scavenge the first object. The reason is that the GC can't linearly scan a block of pinned objects at the moment (doing so would require using the mostly-copying techniques). But since we're restricting ourselves to pinned ByteArrays, not scavenging is ok. This function is called by newPinnedByteArray# which immediately fills the allocated memory with a MutableByteArray#. ------------------------------------------------------------------------- */ StgPtr allocatePinned (Capability *cap, lnat n) { StgPtr p; bdescr *bd; // If the request is for a large object, then allocate() // will give us a pinned object anyway. if (n >= LARGE_OBJECT_THRESHOLD/sizeof(W_)) { p = allocate(cap, n); Bdescr(p)->flags |= BF_PINNED; return p; } TICK_ALLOC_HEAP_NOCTR(n); CCS_ALLOC(CCCS,n); bd = cap->pinned_object_block; // If we don't have a block of pinned objects yet, or the current // one isn't large enough to hold the new object, allocate a new one. if (bd == NULL || (bd->free + n) > (bd->start + BLOCK_SIZE_W)) { ACQUIRE_SM_LOCK; cap->pinned_object_block = bd = allocBlock(); dbl_link_onto(bd, &g0->large_objects); g0->n_large_blocks++; g0->n_new_large_blocks++; RELEASE_SM_LOCK; initBdescr(bd, g0, g0); bd->flags = BF_PINNED | BF_LARGE; bd->free = bd->start; } p = bd->free; bd->free += n; return p; } /* ----------------------------------------------------------------------------- Write Barriers -------------------------------------------------------------------------- */ /* This is the write barrier for MUT_VARs, a.k.a. IORefs. A MUT_VAR_CLEAN object is not on the mutable list; a MUT_VAR_DIRTY is. When written to, a MUT_VAR_CLEAN turns into a MUT_VAR_DIRTY and is put on the mutable list. */ void dirty_MUT_VAR(StgRegTable *reg, StgClosure *p) { Capability *cap = regTableToCapability(reg); if (p->header.info == &stg_MUT_VAR_CLEAN_info) { p->header.info = &stg_MUT_VAR_DIRTY_info; recordClosureMutated(cap,p); } } // Setting a TSO's link field with a write barrier. // It is *not* necessary to call this function when // * setting the link field to END_TSO_QUEUE // * putting a TSO on the blackhole_queue // * setting the link field of the currently running TSO, as it // will already be dirty. void setTSOLink (Capability *cap, StgTSO *tso, StgTSO *target) { if (tso->dirty == 0 && (tso->flags & TSO_LINK_DIRTY) == 0) { tso->flags |= TSO_LINK_DIRTY; recordClosureMutated(cap,(StgClosure*)tso); } tso->_link = target; } void setTSOPrev (Capability *cap, StgTSO *tso, StgTSO *target) { if (tso->dirty == 0 && (tso->flags & TSO_LINK_DIRTY) == 0) { tso->flags |= TSO_LINK_DIRTY; recordClosureMutated(cap,(StgClosure*)tso); } tso->block_info.prev = target; } void dirty_TSO (Capability *cap, StgTSO *tso) { if (tso->dirty == 0 && (tso->flags & TSO_LINK_DIRTY) == 0) { recordClosureMutated(cap,(StgClosure*)tso); } tso->dirty = 1; } /* This is the write barrier for MVARs. An MVAR_CLEAN objects is not on the mutable list; a MVAR_DIRTY is. When written to, a MVAR_CLEAN turns into a MVAR_DIRTY and is put on the mutable list. The check for MVAR_CLEAN is inlined at the call site for speed, this really does make a difference on concurrency-heavy benchmarks such as Chaneneos and cheap-concurrency. */ void dirty_MVAR(StgRegTable *reg, StgClosure *p) { recordClosureMutated(regTableToCapability(reg),p); } /* ----------------------------------------------------------------------------- * Stats and stuff * -------------------------------------------------------------------------- */ /* ----------------------------------------------------------------------------- * calcAllocated() * * Approximate how much we've allocated: number of blocks in the * nursery + blocks allocated via allocate() - unused nusery blocks. * This leaves a little slop at the end of each block. * -------------------------------------------------------------------------- */ lnat calcAllocated( void ) { nat allocated; bdescr *bd; nat i; allocated = countNurseryBlocks() * BLOCK_SIZE_W; for (i = 0; i < n_capabilities; i++) { Capability *cap; for ( bd = capabilities[i].r.rCurrentNursery->link; bd != NULL; bd = bd->link ) { allocated -= BLOCK_SIZE_W; } cap = &capabilities[i]; if (cap->r.rCurrentNursery->free < cap->r.rCurrentNursery->start + BLOCK_SIZE_W) { allocated -= (cap->r.rCurrentNursery->start + BLOCK_SIZE_W) - cap->r.rCurrentNursery->free; } if (cap->pinned_object_block != NULL) { allocated -= (cap->pinned_object_block->start + BLOCK_SIZE_W) - cap->pinned_object_block->free; } } allocated += g0->n_new_large_blocks * BLOCK_SIZE_W; return allocated; } /* Approximate the amount of live data in the heap. To be called just * after garbage collection (see GarbageCollect()). */ lnat calcLiveBlocks (void) { nat g; lnat live = 0; generation *gen; for (g = 0; g < RtsFlags.GcFlags.generations; g++) { /* approximate amount of live data (doesn't take into account slop * at end of each block). */ gen = &generations[g]; live += gen->n_large_blocks + gen->n_blocks; } return live; } lnat countOccupied (bdescr *bd) { lnat words; words = 0; for (; bd != NULL; bd = bd->link) { ASSERT(bd->free <= bd->start + bd->blocks * BLOCK_SIZE_W); words += bd->free - bd->start; } return words; } // Return an accurate count of the live data in the heap, excluding // generation 0. lnat calcLiveWords (void) { nat g; lnat live; generation *gen; live = 0; for (g = 0; g < RtsFlags.GcFlags.generations; g++) { gen = &generations[g]; live += gen->n_words + countOccupied(gen->large_objects); } return live; } /* Approximate the number of blocks that will be needed at the next * garbage collection. * * Assume: all data currently live will remain live. Generationss * that will be collected next time will therefore need twice as many * blocks since all the data will be copied. */ extern lnat calcNeeded(void) { lnat needed = 0; nat g; generation *gen; for (g = 0; g < RtsFlags.GcFlags.generations; g++) { gen = &generations[g]; // we need at least this much space needed += gen->n_blocks + gen->n_large_blocks; // any additional space needed to collect this gen next time? if (g == 0 || // always collect gen 0 (gen->n_blocks + gen->n_large_blocks > gen->max_blocks)) { // we will collect this gen next time if (gen->mark) { // bitmap: needed += gen->n_blocks / BITS_IN(W_); // mark stack: needed += gen->n_blocks / 100; } if (gen->compact) { continue; // no additional space needed for compaction } else { needed += gen->n_blocks; } } } return needed; } /* ---------------------------------------------------------------------------- Executable memory Executable memory must be managed separately from non-executable memory. Most OSs these days require you to jump through hoops to dynamically allocate executable memory, due to various security measures. Here we provide a small memory allocator for executable memory. Memory is managed with a page granularity; we allocate linearly in the page, and when the page is emptied (all objects on the page are free) we free the page again, not forgetting to make it non-executable. TODO: The inability to handle objects bigger than BLOCK_SIZE_W means that the linker cannot use allocateExec for loading object code files on Windows. Once allocateExec can handle larger objects, the linker should be modified to use allocateExec instead of VirtualAlloc. ------------------------------------------------------------------------- */ #if defined(linux_HOST_OS) // On Linux we need to use libffi for allocating executable memory, // because it knows how to work around the restrictions put in place // by SELinux. void *allocateExec (nat bytes, void **exec_ret) { void **ret, **exec; ACQUIRE_SM_LOCK; ret = ffi_closure_alloc (sizeof(void *) + (size_t)bytes, (void**)&exec); RELEASE_SM_LOCK; if (ret == NULL) return ret; *ret = ret; // save the address of the writable mapping, for freeExec(). *exec_ret = exec + 1; return (ret + 1); } // freeExec gets passed the executable address, not the writable address. void freeExec (void *addr) { void *writable; writable = *((void**)addr - 1); ACQUIRE_SM_LOCK; ffi_closure_free (writable); RELEASE_SM_LOCK } #else void *allocateExec (nat bytes, void **exec_ret) { void *ret; nat n; ACQUIRE_SM_LOCK; // round up to words. n = (bytes + sizeof(W_) + 1) / sizeof(W_); if (n+1 > BLOCK_SIZE_W) { barf("allocateExec: can't handle large objects"); } if (exec_block == NULL || exec_block->free + n + 1 > exec_block->start + BLOCK_SIZE_W) { bdescr *bd; lnat pagesize = getPageSize(); bd = allocGroup(stg_max(1, pagesize / BLOCK_SIZE)); debugTrace(DEBUG_gc, "allocate exec block %p", bd->start); bd->gen_no = 0; bd->flags = BF_EXEC; bd->link = exec_block; if (exec_block != NULL) { exec_block->u.back = bd; } bd->u.back = NULL; setExecutable(bd->start, bd->blocks * BLOCK_SIZE, rtsTrue); exec_block = bd; } *(exec_block->free) = n; // store the size of this chunk exec_block->gen_no += n; // gen_no stores the number of words allocated ret = exec_block->free + 1; exec_block->free += n + 1; RELEASE_SM_LOCK *exec_ret = ret; return ret; } void freeExec (void *addr) { StgPtr p = (StgPtr)addr - 1; bdescr *bd = Bdescr((StgPtr)p); if ((bd->flags & BF_EXEC) == 0) { barf("freeExec: not executable"); } if (*(StgPtr)p == 0) { barf("freeExec: already free?"); } ACQUIRE_SM_LOCK; bd->gen_no -= *(StgPtr)p; *(StgPtr)p = 0; if (bd->gen_no == 0) { // Free the block if it is empty, but not if it is the block at // the head of the queue. if (bd != exec_block) { debugTrace(DEBUG_gc, "free exec block %p", bd->start); dbl_link_remove(bd, &exec_block); setExecutable(bd->start, bd->blocks * BLOCK_SIZE, rtsFalse); freeGroup(bd); } else { bd->free = bd->start; } } RELEASE_SM_LOCK } #endif /* mingw32_HOST_OS */ #ifdef DEBUG // handy function for use in gdb, because Bdescr() is inlined. extern bdescr *_bdescr( StgPtr p ); bdescr * _bdescr( StgPtr p ) { return Bdescr(p); } #endif